
TCK User’s Guide for Technology
Implementors

Table of Contents
Eclipse Foundation . 1

Preface. 2

Who Should Use This Book. 2

Before You Read This Book . 2

Typographic Conventions. 3

Shell Prompts in Command Examples . 3

1 Introduction . 4

1.1 Compatibility Testing . 4

1.2 About the TCK . 6

1.3 Getting Started With the TCK . 9

2 Procedure for Certification . 10

2.1 Certification Overview . 10

2.2 Compatibility Requirements . 10

2.3 Test Appeals Process . 15

2.4 Specifications for Jakarta XML Web Services . 17

2.5 Libraries for Jakarta XML Web Services . 18

3 Installation . 19

3.1 Obtaining a Compatible Implementation . 19

3.2 Installing the Software . 19

4 Setup and Configuration . 22

4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation 22

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor

Implementation

 24

4.3 Additional JAX-WS TCK Instructions. 27

4.4 Custom Configuration Handlers. 33

4.5 Custom Deployment Handlers . 34

4.6 Using the JavaTest Harness Software . 35

4.7 Using the JavaTest Harness Configuration GUI . 36

5 Executing Tests. 40

5.1 Starting JavaTest . 40

5.2 Running a Subset of the Tests . 42

5.3 Running the TCK Against another CI . 44

5.4 Running the TCK Against a Vendor’s Implementation . 44

5.5 Test Reports . 44

5.6 Running the JAX-WS TCK Against the JAX-WS RI. 46

5.7 Running the JAX-WS TCK Against a Vendor’s Implementation . 46

5.8 Running the Rebuilt JAX-WS TCK Against the JAX-WS RI . 47

5.9 Testing Interoperability Between a Vendor Implementation and the JAX-WS Reference

Implementation

 47

6 Debugging Test Problems . 48

6.1 Overview . 48

6.2 Test Tree. 49

6.3 Folder Information . 49

6.4 Test Information . 49

6.5 Report Files . 50

6.6 Configuration Failures . 50

A Frequently Asked Questions . 51

A.1 Where do I start to debug a test failure? . 51

A.2 How do I restart a crashed test run? . 51

A.3 What would cause tests be added to the exclude list? . 51

B Rebuilding the JAX-WS TCK Using the Vendor’s Toolset . 52

B.1 Overview . 52

B.2 Rebuilding the JAX-WS TCK Classes Using Ant . 53

B.3 Rebuilding the JAX-WS TCK Classes Manually . 56

B.4 wsgen Reference . 56

B.5 wsimport Reference . 60

Eclipse Foundation
Technology Compatibility Kit User’s Guide for Jakarta XML Web Services

Release 2.3 for Jakarta EE

September 2019

Technology Compatibility Kit User’s Guide for Jakarta XML Web Services, Release 2.3 for Jakarta EE

Copyright © 2017, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

References in this document to JWB refer to the Jakarta XML Web Services unless otherwise noted.

Eclipse Foundation

DRAFT TCK User’s Guide for Technology Implementors 1

http://www.eclipse.org/legal/epl-2.0

Preface
This guide describes how to install, configure, and run the Technology Compatibility Kit (TCK) that is
used to test the Jakarta XML Web Services (XML Web Services 2.3) technology.

The XML Web Services TCK is a portable, configurable automated test suite for verifying the
compatibility of a vendor’s implementation of the XML Web Services 2.3 Specification (hereafter
referred to as the vendor implementation or VI). The XML Web Services TCK uses the JavaTest harness
version 5.0 to run the test suite

Note All references to specific Web URLs are given for the sake of your convenience in
locating the resources quickly. These references are always subject to changes that are
in many cases beyond the control of the authors of this guide.

Jakarta EE is a community sponsored and community run program. Organizations contribute, along
side individual contributors who use, evolve and assist others. Commercial support is not available
through the Eclipse Foundation resources. Please refer to the Eclipse EE4J project site
(https://projects.eclipse.org/projects/ee4j). There, you will find additional details as well as a list of all
the associated sub-projects (Implementations and APIs), that make up Jakarta EE and define these
specifications. If you have questions about this Specification you may send inquiries to wombat-
dev@eclipse.org. If you have questions about this TCK, you may send inquiries to jakartaee-tck-
dev@eclipse.org.

Who Should Use This Book
This guide is for vendors that implement the XML Web Services 2.3 technology to assist them in
running the test suite that verifies compatibility of their implementation of the XML Web Services 2.3
Specification.

Before You Read This Book
You should be familiar with the XML Web Services 2.3, version 2.3 Specification, which can be found at
https://jakarta.ee/specifications/xml-ws/2.3/.

Before running the tests in the XML Web Services TCK, you should familiarize yourself with the
JavaTest documentation which can be accessed at the JT Harness web site.

Who Should Use This Book

2 TCK User’s Guide for Technology Implementors DRAFT

https://projects.eclipse.org/projects/ee4j
mailto:wombat-dev@eclipse.org
mailto:wombat-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
https://jakarta.ee/specifications/xml-ws/2.3/
https://wiki.openjdk.java.net/display/CodeTools/JT+Harness

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Convention Meaning Example

Boldface Boldface type indicates graphical user
interface elements associated with an
action, terms defined in text, or what
you type, contrasted with onscreen
computer output.

From the File menu, select Open Project.

A cache is a copy that is stored locally.

machine_name% *su*

Password:

Monospace Monospace type indicates the names of
files and directories, commands within
a paragraph, URLs, code in examples,
text that appears on the screen, or text
that you enter.

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Italic Italic type indicates book titles,
emphasis, or placeholder variables for
which you supply particular values.

Read Chapter 6 in the User’s Guide.

Do not save the file.

The command to remove a file is rm filename.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Bash shell shell_name-shell_version$

Bash shell for superuser shell_name-shell_version#

Typographic Conventions

DRAFT TCK User’s Guide for Technology Implementors 3

1 Introduction
This chapter provides an overview of the principles that apply generally to all Technology
Compatibility Kits (TCKs) and describes the Jakarta XML Web Services TCK (XML Web Services 2.3
TCK). It also includes a high level listing of what is needed to get up and running with the XML Web
Services TCK.

This chapter includes the following topics:

• Compatibility Testing

• About the TCK

• Getting Started With the TCK

1.1 Compatibility Testing
Compatibility testing differs from traditional product testing in a number of ways. The focus of
compatibility testing is to test those features and areas of an implementation that are likely to differ
across other implementations, such as those features that:

• Rely on hardware or operating system-specific behavior

• Are difficult to port

• Mask or abstract hardware or operating system behavior

Compatibility test development for a given feature relies on a complete specification and compatible
implementation (CI) for that feature. Compatibility testing is not primarily concerned with robustness,
performance, nor ease of use.

1.1.1 Why Compatibility Testing is Important

Jakarta platform compatibility is important to different groups involved with Jakarta technologies for
different reasons:

• Compatibility testing ensures that the Jakarta platform does not become fragmented as it is ported
to different operating systems and hardware environments.

• Compatibility testing benefits developers working in the Jakarta programming language, allowing
them to write applications once and then to deploy them across heterogeneous computing
environments without porting.

• Compatibility testing allows application users to obtain applications from disparate sources and
deploy them with confidence.

1.1 Compatibility Testing

4 TCK User’s Guide for Technology Implementors DRAFT

#GBFTK
#GBFQR
#GBFQW

• Conformance testing benefits Jakarta platform implementors by ensuring a level playing field for
all Jakarta platform ports.

1.1.2 TCK Compatibility Rules

Compatibility criteria for all technology implementations are embodied in the TCK Compatibility Rules
that apply to a specified technology. Each TCK tests for adherence to these Rules as described in
Chapter 2, "Procedure for Certification."

1.1.3 TCK Overview

A TCK is a set of tools and tests used to verify that a vendor’s compatible implementation of a Jakarta
EE technology conforms to the applicable specification. All tests in the TCK are based on the written
specifications for the Jakarta EE platform. A TCK tests compatibility of a vendor’s compatible
implementation of the technology to the applicable specification of the technology. Compatibility
testing is a means of ensuring correctness, completeness, and consistency across all implementations
developed by technology licensees.

The set of tests included with each TCK is called the test suite. Most tests in a TCK’s test suite are self-
checking, but some tests may require tester interaction. Most tests return either a Pass or Fail status.
For a given platform to be certified, all of the required tests must pass. The definition of required tests
may change from platform to platform.

The definition of required tests will change over time. Before your final certification test pass, be sure
to download the latest version of this TCK.

1.1.4 Jakarta EE Specification Process (JESP) Program and Compatibility
Testing

The Jakarta EE Specification Process (JESP) program is the formalization of the open process that has
been used since 2019 to develop and revise Jakarta EE technology specifications in cooperation with
the international Jakarta EE community. The JESP program specifies that the following three major
components must be included as deliverables in a final Jakarta EE technology release under the
direction of the responsible Expert Group:

• Technology Specification

• Compatible Implementation (CI)

• Technology Compatibility Kit (TCK)

For further information about the JESP program, go to Jakarta EE Specification Process community

1.1 Compatibility Testing

DRAFT TCK User’s Guide for Technology Implementors 5

rules.html#GBFSN

page https://jakarta.ee/specifications.

1.2 About the TCK
The XML Web Services TCK 2.3 is designed as a portable, configurable, automated test suite for
verifying the compatibility of a vendor’s implementation of the XML Web Services 2.3 Specification.

1.2.1 TCK Specifications and Requirements

This section lists the applicable requirements and specifications.

• Specification Requirements: Software requirements for a XML Web Services implementation are
described in detail in the XML Web Services 2.3 Specification. Links to the XML Web Services
specification and other product information can be found at https://jakarta.ee/specifications/xml-
ws/2.3/.

• XML Web Services Version: The XML Web Services 2.3 TCK is based on the XML Web Services
Specification, Version 2.3.

• Compatible Implementation: One XML Web Services 2.3 Compatible Implementation, Java EE 8 RI
is available from the Eclipse EE4J project (https://projects.eclipse.org/projects/ee4j). See the CI
documentation page at http://javaee.github.io for more information.

See the XML Web Services TCK Release Notes for more specific information about Java SE version
requirements, supported platforms, restrictions, and so on.

1.2.2 TCK Components

The XML Web Services TCK 2.3 includes the following components:

• JavaTest harness version 5.0 and related documentation. See the ReleaseNotes-jtharness.html file
and the JT Harness web site for additional information.

• XML Web Services TCK signature tests; check that all public APIs are supported and/or defined as
specified in the XML Web Services Version 2.3 implementation under test.

• If applicable, an exclude list, which provides a list of tests that your implementation is not required
to pass.

• API tests for all of the XML Web Services API in all related packages:

◦ jakarta.xml.ws

◦ jakarta.xml.ws.handler

1.2 About the TCK

6 TCK User’s Guide for Technology Implementors DRAFT

https://jakarta.ee/specifications
https://jakarta.ee/specifications/xml-ws/2.3/
https://jakarta.ee/specifications/xml-ws/2.3/
https://projects.eclipse.org/projects/ee4j
http://javaee.github.io
https://wiki.openjdk.java.net/display/CodeTools/JT+Harness

◦ jakarta.xml.ws.handler.soap

◦ jakarta.xml.ws.http

◦ jakarta.xml.ws.soap

◦ jakarta.xml.ws.spi

◦ jakarta.xml.ws.spi.http

◦ jakarta.xml.ws.wsaddressing

The XML Web Services TCK tests run on the following platforms:

• Microsoft Windows 10

• Oracle Linux 7.1

1.2.3 JavaTest Harness

The JavaTest harness version 5.0 is a set of tools designed to run and manage test suites on different
Java platforms. To JavaTest, Jakarta EE can be considered another platform. The JavaTest harness can
be described as both a Java application and a set of compatibility testing tools. It can run tests on
different kinds of Java platforms and it allows the results to be browsed online within the JavaTest GUI,
or offline in the HTML reports that the JavaTest harness generates.

The JavaTest harness includes the applications and tools that are used for test execution and test suite
management. It supports the following features:

• Sequencing of tests, allowing them to be loaded and executed automatically

• Graphic user interface (GUI) for ease of use

• Automated reporting capability to minimize manual errors

• Failure analysis

• Test result auditing and auditable test specification framework

• Distributed testing environment support

To run tests using the JavaTest harness, you specify which tests in the test suite to run, how to run
them, and where to put the results as described in Chapter 4, "Setup and Configuration."

1.2.4 TCK Compatibility Test Suite

The test suite is the collection of tests used by the JavaTest harness to test a particular technology
implementation. In this case, it is the collection of tests used by the XML Web Services TCK 2.3 to test a
XML Web Services 2.3 implementation. The tests are designed to verify that a vendor’s runtime
implementation of the technology complies with the appropriate specification. The individual tests
correspond to assertions of the specification.

1.2 About the TCK

DRAFT TCK User’s Guide for Technology Implementors 7

config.html#GBFVV

The tests that make up the TCK compatibility test suite are precompiled and indexed within the TCK
test directory structure. When a test run is started, the JavaTest harness scans through the set of tests
that are located under the directories that have been selected. While scanning, the JavaTest harness
selects the appropriate tests according to any matches with the filters you are using and queues them
up for execution.

1.2.5 Exclude Lists

Each version of a TCK includes an Exclude List contained in a .jtx file. This is a list of test file URLs that
identify tests which do not have to be run for the specific version of the TCK being used. Whenever
tests are run, the JavaTest harness automatically excludes any test on the Exclude List from being
executed.

A vendor’s compatible implementation is not required to pass or run any test on the Exclude List. The
Exclude List file, <TS_HOME>/bin/ts.jtx, is included in the XML Web Services TCK.

From time to time, updates to the Exclude List are made available. The exclude list is
included in the Jakarta TCK ZIP archive. Each time an update is approved and
released, the version number will be incremented. You should always make sure you
are using an up-to-date copy of the Exclude List before running the XML Web Services
TCK to verify your implementation.

A test might be in the Exclude List for reasons such as:

• An error in an underlying implementation API has been discovered which does not allow the test
to execute properly.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test itself has been discovered.

• The test fails due to a bug in the tools (such as the JavaTest harness, for example).

In addition, all tests are run against the compatible implementations. Any tests that fail when run on a
compatible Jakarta platform are put on the Exclude List. Any test that is not specification-based, or for
which the specification is vague, may be excluded. Any test that is found to be implementation
dependent (based on a particular thread scheduling model, based on a particular file system behavior,
and so on) may be excluded.

Vendors are not permitted to alter or modify Exclude Lists. Changes to an Exclude List
can only be made by using the procedure described in Section 2.3.1, "TCK Test Appeals
Steps."

1.2 About the TCK

8 TCK User’s Guide for Technology Implementors DRAFT

rules.html#CJAJEAEI
rules.html#CJAJEAEI

1.2.6 TCK Configuration

You need to set several variables in your test environment, modify properties in the
<TS_HOME>/bin/ts.jte file, and then use the JavaTest harness to configure and run the XML Web
Services tests, as described in Chapter 4, "Setup and Configuration."

The Jakarta EE Specification Process support multiple compatible implementations.
These instructions explain how to get started with the Java EE 8 RI CI. If you are using
another compatible implementation, refer to material provided by that
implementation for specific instructions and procedures.

1.3 Getting Started With the TCK
This section provides an general overview of what needs to be done to install, set up, test, and use the
XML Web Services TCK. These steps are explained in more detail in subsequent chapters of this guide.

1. Make sure that the following software has been correctly installed on the system hosting the
JavaTest harness:

• Java EE 8 RI or, at a minimum, a Web server with a Servlet container

• Java SE 8

• A CI for XML Web Services 2.3. One example is Java EE 8 RI.

• XML Web Services TCK version 2.3, which includes:

◦ JDOM 1.0

◦ Apache Commons HTTP Client 3.1

◦ Apache Commons Logging 1.1.1

◦ Apache Commons Codec 1.3

• The XML Web Services 2.3 Vendor Implementation (VI)
See the documentation for each of these software applications for installation instructions. See
Chapter 3, "Installation," for instructions on installing the XML Web Services TCK.

1. Set up the XML Web Services TCK software.
See Chapter 4, "Setup and Configuration," for details about the following steps.

1. Set up your shell environment.

2. Modify the required properties in the <TS_HOME>/bin/ts.jte file.

3. Configure the JavaTest harness.

2. Test the XML Web Services 2.3 implementation.
Test the XML Web Services implementation installation by running the test suite. See Chapter 5,
"Executing Tests."

1.3 Getting Started With the TCK

DRAFT TCK User’s Guide for Technology Implementors 9

config.html#GBFVV
install.html#GBFTP
config.html#GBFVV
using.html#GBFWO
using.html#GBFWO

2 Procedure for Certification
This chapter describes the compatibility testing procedure and compatibility requirements for Jakarta
XML Web Services. This chapter contains the following sections:

• Certification Overview

• Compatibility Requirements

• Test Appeals Process

• Specifications for Jakarta XML Web Services

• Libraries for Jakarta XML Web Services

2.1 Certification Overview
The certification process for XML Web Services 2.3 consists of the following activities:

• Install the appropriate version of the Technology Compatibility Kit (TCK) and execute it in
accordance with the instructions in this User’s Guide.

• Ensure that you meet the requirements outlined in Compatibility Requirements below.

• Certify to the Eclipse Foundation that you have finished testing and that you meet all of the
compatibility requirements, as required by the Eclipse Foundation TCK License.

2.2 Compatibility Requirements
The compatibility requirements for XML Web Services 2.3 consist of meeting the requirements set
forth by the rules and associated definitions contained in this section.

2.2.1 Definitions

These definitions are for use only with these compatibility requirements and are not intended for any
other purpose.

Table 2-1 Definitions

2.1 Certification Overview

10 TCK User’s Guide for Technology Implementors DRAFT

#CJAFFDGI
#CJAFGIGG
#CJAIIBDJ
#CJAJECIE
#CJABAHGI
#CJAFGIGG

Term Definition

API Definition Product A Product for which the only Java class files contained in the product are
those corresponding to the application programming interfaces defined by
the Specifications, and which is intended only as a means for formally
specifying the application programming interfaces defined by the
Specifications.

Computational Resource A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at a
specific or minimum revision level so as to satisfy the requirements of the
Test Suite.

Examples of computational resources that may vary in quantity are RAM
and file descriptors.

Examples of computational resources that may vary in existence (that is,
may or may not exist) are graphics cards and device drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

Configuration
Descriptor

Any file whose format is well defined by a specification and which contains
configuration information for a set of Java classes, archive, or other feature
defined in the specification.

Conformance Tests All tests in the Test Suite for an indicated Technology Under Test, as released
and distributed by the Eclipse Foundation, excluding those tests on the
published Exclude List for the Technology Under Test.

Container An implementation of the associated Libraries, as specified in the
Specifications, and a version of a Java Platform, Standard Edition Runtime
Product, as specified in the Specifications, or a later version of a Java
Platform, Standard Edition Runtime Product that also meets these
compatibility requirements.

Documented Made technically accessible and made known to users, typically by means
such as marketing materials, product documentation, usage messages, or
developer support programs.

Exclude List The most current list of tests, released and distributed by the Eclipse
Foundation, that are not required to be passed to certify conformance. The
Jakarta EE Specification Committee may add to the Exclude List for that Test
Suite as needed at any time, in which case the updated TCK version
supplants any previous Exclude Lists for that Test Suite.

Libraries The class libraries, as specified through the Jakarta EE Specification Process
(JESP), for the Technology Under Test.

The Libraries for Jakarta XML Web Services are listed at the end of this
chapter.

2.2 Compatibility Requirements

DRAFT TCK User’s Guide for Technology Implementors 11

Term Definition

Location Resource A location of classes or native libraries that are components of the test tools
or tests, such that these classes or libraries may be required to exist in a
certain location in order to satisfy the requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

Maintenance Lead The corresponding Jakarta EE Specification Project is responsible for
maintaining the Specification, and the TCK for the Technology. The
Specification Project Team will propose revisions and updates to the Jakarta
EE Specification Committee which will approve and release new versions of
the specification and TCK.

Operating Mode Any Documented option of a Product that can be changed by a user in order
to modify the behavior of the Product.

For example, an Operating Mode can be binary (enable/disable
optimization), an enumeration (select from a list of protocols), or a range
(set the maximum number of active threads).

Note that an Operating Mode may be selected by a command line switch, an
environment variable, a GUI user interface element, a configuration or
control file, etc.

Product A vendor’s product in which the Technology Under Test is implemented or
incorporated, and that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an Operating Mode.

For example, a Product supporting an Operating Mode that permits user
selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

Rebuildable Tests Tests that must be built using an implementation-specific mechanism. This
mechanism must produce specification-defined artifacts. Rebuilding and
running these tests against a known compatible implementation verifies
that the mechanism generates compatible artifacts.

Resource A Computational Resource, a Location Resource, or a Security Resource.

Rules These definitions and rules in this Compatibility Requirements section of
this User’s Guide.

Runtime The Containers specified in the Specifications.

2.2 Compatibility Requirements

12 TCK User’s Guide for Technology Implementors DRAFT

Term Definition

Security Resource A security privilege or policy necessary for the proper execution of the Test
Suite.

For example, the user executing the Test Suite will need the privilege to
access the files and network resources necessary for use of the Product.

Specifications The documents produced through the Jakarta EE Specification Process
(JESP) that define a particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in this
chapter.

Technology Specifications and one or more compatible implementations produced
through the Jakarta EE Specification Process (JESP).

Technology Under Test Specifications and a compatible implementation for Jakarta XML Web
Services Version 2.3.

Test Suite The requirements, tests, and testing tools distributed by the Maintenance
Lead as applicable to a given Version of the Technology.

Version A release of the Technology, as produced through the Jakarta EE
Specification Process (JESP).

Development Kit A software product that implements or incorporates a Compiler, a Schema
Compiler, a Schema Generator, a Java-to-WSDL Tool, a WSDL-to-Java Tool,
and/or an RMI Compiler.

Java-to-WSDL Output Output of a Java-to-WSDL Tool that is required for Web service deployment
and invocation.

Java-to-WSDL Tool A software development tool that implements or incorporates a function
that generates web service endpoint descriptions in WSDL and XML schema
format from Source Code as specified by the Jakarta XML Web Services
Specification.

WSDL-to-Java Output Output of a WSDL-to-Java tool that is required for Web service deployment
and invocation.

WSDL-to-Java Tool A software development tool that implements or incorporates a function
that generates web service interfaces for clients and endpoints from a
WSDL description as specified by the Jakarta XML Web Services
Specification.

2.2.2 Rules for Jakarta XML Web Services Products

The following rules apply for each version of an operating system, software component, and hardware
platform Documented as supporting the Product:

2.2 Compatibility Requirements

DRAFT TCK User’s Guide for Technology Implementors 13

XMLWS1 The Product must be able to satisfy all applicable compatibility requirements, including
passing all Conformance Tests, in every Product Configuration and in every combination of Product
Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

XMLWS1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test
Suite, testing may always use a Product Configuration of that Operating Mode providing that Resource,
even if other Product Configurations do not provide that Resource. Notwithstanding such exceptions,
each Product must have at least one set of Product Configurations of such Operating Modes that is able
to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy (i.e., Security Resource)
which has one or more Product Configurations that cause Conformance Tests to fail may be tested
using a Product Configuration that allows all Conformance Tests to pass.

XMLWS1.2 A Product Configuration of an Operating Mode that causes the Product to report only
version, usage, or diagnostic information is exempted from these compatibility rules.

XMLWS1.3 An API Definition Product is exempt from all functional testing requirements defined here,
except the signature tests.

XMLWS2 Some Conformance Tests may have properties that may be changed. Properties that can be
changed are identified in the configuration interview. Properties that can be changed are identified in
the JavaTest Environment (.jte) files in the Test Suite installation. Apart from changing such properties
and other allowed modifications described in this User’s Guide (if any), no source or binary code for a
Conformance Test may be altered in any way without prior written permission. Any such allowed
alterations to the Conformance Tests will be provided via the Jakarta EE Specification Project website
and apply to all vendor compatible implementations.

XMLWS3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance Lead
must be used to certify compliance.

XMLWS4 The Exclude List associated with the Test Suite cannot be modified.

XMLWS5 The Maintenance Lead can define exceptions to these Rules. Such exceptions would be made
available as above, and will apply to all vendor implementations.

XMLWS6 All hardware and software component additions, deletions, and modifications to a
Documented supporting hardware/software platform, that are not part of the Product but required for
the Product to satisfy the compatibility requirements, must be Documented and available to users of
the Product.

For example, if a patch to a particular version of a supporting operating system is required for the
Product to pass the Conformance Tests, that patch must be Documented and available to users of the

2.2 Compatibility Requirements

14 TCK User’s Guide for Technology Implementors DRAFT

Product.

XMLWS7 The Product must contain the full set of public and protected classes and interfaces for all the
Libraries. Those classes and interfaces must contain exactly the set of public and protected methods,
constructors, and fields defined by the Specifications for those Libraries. No subsetting, supersetting,
or modifications of the public and protected API of the Libraries are allowed except only as specifically
exempted by these Rules.

XMLWS7.1 If a Product includes Technologies in addition to the Technology Under Test, then it must
contain the full set of combined public and protected classes and interfaces. The API of the Product
must contain the union of the included Technologies. No further modifications to the APIs of the
included Technologies are allowed.

XMLWS8 Except for tests specifically required by this TCK to be rebuilt (if any), the binary
Conformance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead must be
used to certify compliance.

XMLWS9 The functional programmatic behavior of any binary class or interface must be that defined
by the Specifications.

XMLWS10 Source Code in WSDL-to-Java Output when compiled by a Reference Compiler must execute
properly when run on a Reference Runtime.

XMLWS11 Source Code in WSDL-to-Java Output must be in source file format defined by the Java
Language Specification (JLS).

XMLWS12 Java-to-WSDL Output must fully meet W3C requirements for the Web Services Description
Language (WSDL) 1.1.

XMLWS13 A Java-to-WSDL Tool must not produce Java-to-WSDL Output from source code that does
not conform to the Java Language Specification (JLS).

2.3 Test Appeals Process
Jakarta has a well established process for managing challenges to its TCKs. Any implementor may
submit a challenge to one or more tests in the XML Web Services TCK as it relates to their
implementation. Implementor means the entity as a whole in charge of producing the final certified
release. Challenges filed should represent the consensus of that entity.

2.3.1 Valid Challenges

Any test case (e.g., test class, @Test method), test case configuration (e.g., deployment descriptor), test
beans, annotations, and other resources considered part of the TCK may be challenged.

The following scenarios are considered in scope for test challenges:

2.3 Test Appeals Process

DRAFT TCK User’s Guide for Technology Implementors 15

• Claims that a test assertion conflicts with the specification.

• Claims that a test asserts requirements over and above that of the specification.

• Claims that an assertion of the specification is not sufficiently implementable.

• Claims that a test is not portable or depends on a particular implementation.

2.3.2 Invalid Challenges

The following scenarios are considered out of scope for test challenges and will be immediately closed
if filed:

• Challenging an implementation’s claim of passing a test. Certification is an honor system and these
issues must be raised directly with the implementation.

• Challenging the usefulness of a specification requirement. The challenge process cannot be used to
bypass the specification process and raise in question the need or relevance of a specification
requirement.

• Claims the TCK is inadequate or missing assertions required by the specification. See the
Improvement section, which is outside the scope of test challenges.

• Challenges that do not represent a consensus of the implementing community will be closed until
such time that the community does agree or agreement cannot be made. The test challenge process
is not the place for implementations to initiate their own internal discussions.

• Challenges to tests that are already excluded for any reason.

• Challenges that an excluded test should not have been excluded and should be re-added should be
opened as a new enhancement request

Test challenges must be made in writing via the XML Web Services specification project issue tracker
as described in Section 2.3.3, "TCK Test Appeals Steps."

All tests found to be invalid will be placed on the Exclude List for that version of the XML Web Services
TCK.

2.3.3 TCK Test Appeals Steps

1. Challenges should be filed via the Jakarta XML Web Services specification project’s issue tracker
using the label challenge and include the following information:

◦ The relevant specification version and section number(s)

◦ The coordinates of the challenged test(s)

◦ The exact TCK and exclude list versions

◦ The implementation being tested, including name and company

◦ The full test name

2.3 Test Appeals Process

16 TCK User’s Guide for Technology Implementors DRAFT

#CJAJEAEI

◦ A full description of why the test is invalid and what the correct behavior is believed to be

◦ Any supporting material; debug logs, test output, test logs, run scripts, etc.

2. Specification project evaluates the challenge.
Challenges can be resolved by a specification project lead, or a project challenge triage team, after a
consensus of the specification project committers is reached or attempts to gain consensus fails.
Specification projects may exercise lazy consensus, voting or any practice that follows the
principles of Eclipse Foundation Development Process. The expected timeframe for a response is
two weeks or less. If consensus cannot be reached by the specification project for a prolonged
period of time, the default recommendation is to exclude the tests and address the dispute in a
future revision of the specification.

3. Accepted Challenges.
A consensus that a test produces invalid results will result in the exclusion of that test from
certification requirements, and an immediate update and release of an official distribution of the
TCK including the new exclude list. The associated challenge issue must be closed with an accepted
label to indicate it has been resolved.

4. Rejected Challenges and Remedy.
When a`challenge` issue is rejected, it must be closed with a label of invalid to indicate it has been
rejected. There appeal process for challenges rejected on technical terms is outlined in Escalation
Appeal. If, however, an implementer feels the TCK challenge process was not followed, an appeal
issue should be filed with specification project’s TCK issue tracker using the label challenge-appeal.
A project lead should escalate the issue with the Jakarta EE Specification Committee via email
(jakarta.ee-spec.committee@eclipse.org). The committee will evaluate the matter purely in terms of
due process. If the appeal is accepted, the original TCK challenge issue will be reopened and a label
of appealed-challenge added, along with a discussion of the appeal decision, and the challenge-
appeal issue with be closed. If the appeal is rejected, the challenge-appeal issue should closed with a
label of invalid.

5. Escalation Appeal.
If there is a concern that a TCK process issue has not been resolved satisfactorily, the Eclipse
Development Process Grievance Handling procedure should be followed to escalate the resolution.
Note that this is not a mechanism to attempt to handle implementation specific issues.

2.4 Specifications for Jakarta XML Web Services
The Jakarta XML Web Services specification is available from the specification project web-site:
https://jakarta.ee/specifications/xml-ws/2.3/.

2.4 Specifications for Jakarta XML Web Services

DRAFT TCK User’s Guide for Technology Implementors 17

mailto:jakarta.ee-spec.committee@eclipse.org
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://jakarta.ee/specifications/xml-ws/2.3/

2.5 Libraries for Jakarta XML Web Services
The following is a list of the packages comprising the required class libraries for XML Web Services 2.3:

• jakarta.xml.ws

• jakarta.xml.ws.handler

• jakarta.xml.ws.handler.soap

• jakarta.xml.ws.http

• jakarta.xml.ws.soap

• jakarta.xml.ws.spi

• jakarta.xml.ws.spi.http

• jakarta.xml.ws.wsaddressing

For the latest list of packages, also see:

https://jakarta.ee/specifications/xml-ws/2.3/

2.5 Libraries for Jakarta XML Web Services

18 TCK User’s Guide for Technology Implementors DRAFT

https://jakarta.ee/specifications/xml-ws/2.3/

3 Installation
This chapter explains how to install the Jakarta XML Web Services TCK software.

After installing the software according to the instructions in this chapter, proceed to Chapter 4, "Setup
and Configuration," for instructions on configuring your test environment.

3.1 Obtaining a Compatible Implementation
Each compatible implementation (CI) will provide instructions for obtaining their implementation.
Java EE 8 RI is a compatible implementation which may be obtained from http://javaee.github.io

3.2 Installing the Software
Before you can run the XML Web Services TCK tests, you must install and set up the following software
components:

• Java EE 8 RI or, at a minimum, a Web server with a Servlet container

• Java SE 8

• A CI for XML Web Services 2.3, one example is Java EE 8 RI

• XML Web Services TCK version 2.3, which includes:

◦ JDOM 1.0

◦ Apache Commons HTTP Client 3.1

◦ Apache Commons Logging 1.1.1

◦ Apache Commons Codec 1.3

• The XML Web Services 2.3 Vendor Implementation (VI)

Follow these steps:

1. Install the Java SE 8 software, if it is not already installed.
Download and install the Java SE 8 software from http://www.oracle.com/technetwork/java/javase/
downloads/index.html. Refer to the installation instructions that accompany the software for
additional information.

2. Install the XML Web Services TCK 2.3 software.

1. Copy or download the XML Web Services TCK software to your local system.
You can obtain the XML Web Services TCK software from the Jakarta EE site https://jakarta.ee/
specifications/xml-ws/2.3/.

3.1 Obtaining a Compatible Implementation

DRAFT TCK User’s Guide for Technology Implementors 19

config.html#GBFVV
config.html#GBFVV
http://javaee.github.io
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jakarta.ee/specifications/xml-ws/2.3/
https://jakarta.ee/specifications/xml-ws/2.3/

2. Use the unzip command to extract the bundle in the directory of your choice:
unzip jaxwstck-x.x_dd-Mmm-YYYY.zip

This creates the TCK directory. The TCK is the test suite home, <TS_HOME>.

3. Install the Java EE 8 RI software (the servlet Web container used for running the XML Web Services
TCK with the XML Web Services 2.3 RI), if it is not already installed.
Download and install the Servlet Web container with the XML Web Services 2.3 RI used for running
the XML Web Services TCK 2.3, represented by the Java EE 8 RI. This software can be obtained from
the Java Licensee Engineering Web site. Refer to any installation instructions that accompany the
software for additional information.

4. Install the Java EE 8 RI software which contains the JAX-WS 2.3 Reference Implementation or
install the Standalone JAX-WS 2.3 RI software.
The Java EE 8 RI software contains the JAX-WS 2.3 Reference Implementation and is used to
validate your initial configuration and setup of the JAX-WS TCK 2.3, as well as to run the reverse
tests which are explained further in Chapter 4, "Setup and Configuration" and Appendix B.
The Standalone JAX-WS 2.3 RI software contains the JAX-WS 2.3 Reference Implementation and can
be used with any web container that meets the minimum requirements for a container as defined
in the JAX-WS 2.3 Specification such as the Apache Tomcat web container.
If you use the Standalone JAX-WS 2.3 RI software with the Apache Tomcat web container, you need
to copy the JAR files/classes from the standalone JAX-WS 2.3 RI software to the correct location
under the Apache Tomcat web container. Assuming the Apache Tomcat web container is installed
under ${tomcat.home}, you would copy the JAR files/classes as follows:

cp jaxws-api.jar jaxb-api.jar ${tomcat.home}/common/endorsed

cp commonj.sdo.jar eclipselink.jar FastInfoset.jar gmbal-api-only.jar \
 ha-api.jar jakarta.annotation-api.jar jakarta.persistence.jar \
 javax.xml.soap-api.jar jaxb-core.jar jaxb-impl.jar jaxb-jxc.jar \
 jaxb-xjc.jar jaxws-eclipselink-plugin.jar jaxws-rt.jar jaxwstck.jar \
 jaxws-tools.jar jsr181-api.jar mail.jar management-api.jar mimepull.jar \
 policy.jar resolver.jar saaj-impl.jar sdo-eclipselink-plugin.jar \
 stax2-api.jar stax-ex.jar streambuffer.jar tsharness.jar \
 woodstox-core-asl.jar ${tomcat.home}/shared/lib

cp jaxwstck/lib/tsharness.jar jaxwstck/lib/jaxwstck.jar ${tomcat.home}/shared/lib

If, instead of using Tomcat, you are using the Java EE 8 Reference Implementation, which already
includes JAX-WS 2.3, you only need to copy the jaxwstck/lib/tsharness.jar and
jaxwstck/lib/jaxwstck.jar TCK JAR files to the domain’s lib/ext directory.

5. Install a XML Web Services 2.3 Compatible Implementation.
A Compatible Implementation is used to validate your initial configuration and setup of the XML
Web Services TCK 2.3 tests, which are explained further in Chapter 4, "Setup and Configuration."
The Compatible Implementations for XML Web Services are listed on the Jakarta EE Specifications
web site: https://jakarta.ee/specifications/xml-ws/2.3/.

3.2 Installing the Software

20 TCK User’s Guide for Technology Implementors DRAFT

config.html#GBFVV
rebuild.html#GCLIZ
config.html#GBFVV
https://jakarta.ee/specifications/xml-ws/2.3/

6. Install a Web server on which the XML Web Services TCK test applications can be published for
testing the VI.

7. Install the XML Web Services VI to be tested.
Follow the installation instructions for the particular VI under test.

3.2 Installing the Software

DRAFT TCK User’s Guide for Technology Implementors 21

4 Setup and Configuration

The Jakarta EE Specification process provides for any number of compatible
implementations. As additional implementations become available, refer to project or
product documentation from those vendors for specific TCK setup and operational
guidance.

This chapter describes how to set up the XML Web Services TCK and JavaTest harness software. Before
proceeding with the instructions in this chapter, be sure to install all required software, as described in
Chapter 3, "Installation."

After completing the instructions in this chapter, proceed to Chapter 5, "Executing Tests," for
instructions on running the XML Web Services TCK.

4.1 Configuring Your Environment to Run the TCK
Against the Reference Implementation
After configuring your environment as described in this section, continue with the instructions in
Section 4.6, "Using the JavaTest Harness Software."

In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <TS_HOME> becomes $TS_HOME on Solaris/Linux and %TS_HOME% on
Windows. In addition, the forward slashes (/) used in all of the examples need to be
replaced with backslashes (\) for Windows. Finally, be sure to use the appropriate
separator for your operating system when specifying multiple path entries (; on
Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead.

1. Set the following environment variables in your shell environment:

1. JAVA_HOME to the directory in which Java SE 8 is installed

2. TS_HOME to the directory in which the XML Web Services TCK 2.3 software is installed

3. PATH to include the following directories: JAVA_HOME/bin, JAXWS_HOME/bin, and
<TS_HOME>/tools/ant/bin

2. Edit your <TS_HOME>/bin/ts.jte file and set the following environment variables:

1. Set the webServerHost property to the hostname where the web server is running that is
configured with the JAX-WS RI.
The default setting is localhost.

4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation

22 TCK User’s Guide for Technology Implementors DRAFT

install.html#GBFTP
using.html#GBFWO
#GBFUY

2. Set the webServerPort property to the port number where the web server is running that is
configured with the JAX-WS RI.
The default setting is 8000.

3. Set the jaxws.home property to the location where the JAX-WS RI is installed.
The default setting is ${webcontainer.home}. The value of this property must match the value of
the webcontainer.home property that is set in step g.

4. Set the jaxws.classes property to point to the JAX-WS RI classes/jars.
Note that this property is already set and should not require any changes.

5. Verify that the tools.jar property is set to the location of the tools.jar file that is distributed
with Java SE.

6. Set the impl.vi, impl.vi.deploy.dir, impl.vi.host, and impl.vi.port properties to the
supported web container, deploy directory, host and port for the JAX-WS RI.
The supported web container for the JAX-WS RI is the Java EE 8 RI. So the default settings for
these properties are as follows:

impl.vi.deploy.dir=${webcontainer.home}/domains/domain1/autodeploy
impl.vi=glassfish.xml
impl.vi.host=${webServerHost}
impl.vi.port=${webServerPort}

7. Set the webcontainer.home property to the location where the web server is installed for the JAX-
WS RI. This will be where the Java EE 8 RI is installed.

8. Set the porting.ts.url.class.1 property to the porting implementation class that is used for
obtaining URLs.
The default setting for the JAX-WS RI porting implementation is:

com.sun.ts.lib.implementation.sun.common.SunRIURL

9. Set the user and password properties to the user name and password used for the basic
authentication tests.
The default setting is j2ee for both.

10. Set the authuser and authpassword properties to the user name and password used for the basic
authentication tests.
The default setting for both is javajoe.

11. Set the http.server.supports.endpoint.publish property based on whether Endpoint Publish
APIs are supported on the container.

12. If using Java SE 8 or above, verify that the property endorsed.dirs is set to the location of the VI
API jars for those technologies you wish to override. Java SE 8 contains an implementation of
JAX-WS 2.2 which will conflict with JAX-WS 2.3, therefore this property must be set so that JAX-
WS 2.3 will be used during the building of tests and during test execution.

4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation

DRAFT TCK User’s Guide for Technology Implementors 23

#BABBJEDF

3. Edit the catalog file <TS_HOME>/src/com/sun/ts/tests/jaxws/common/xml/catalog /META-INF/jax-ws-

catalog.xml, replacing the host and port settings of systemId with the value of your host and port
setting where the WSDL is published.

4.2 Configuring Your Environment to Repackage and
Run the TCK Against the Vendor Implementation
After configuring your environment as described in this section, continue with the instructions in
Section 4.4, "Using the JavaTest Harness Software."

In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <TS_HOME> becomes $TS_HOME on Solaris/Linux and %TS_HOME% on
Windows. In addition, the forward slashes (/) used in all of the examples need to be
replaced with backslashes (\) for Windows. Finally, be sure to use the appropriate
separator for your operating system when specifying multiple path entries (; on
Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead.

Before You Begin

Decide against which XML Web Services implementation the tests will be run and determine to which
Servlet–compliant Web server the XML Web Services TCK applications will be published.

Package the XML Web Services test applications for that XML Web Services implementation and
Servlet–compliant Web server.

See Appendix B, "Packaging the Test Applications in Servlet-Compliant WAR Files With VI-Specific
Information," for information about repackaging the XML Web Services test application.

1. Set the following environment variables in your shell environment:

1. JAVA_HOME to the directory in which Java SE 8 is installed

2. TS_HOME to the directory in which the XML Web Services TCK 2.3 software is installed

3. PATH to include the following directories: JAVA_HOME/bin, JAXWS_HOME/bin, and
<TS_HOME>/tools/ant/bin

2. Edit your <TS_HOME>/bin/ts.jte file and set the following environment variables:

1. Set the webServerHost property to the hostname where the web server that is configured with
the Vendor Implementation is running.
The default setting is localhost.

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation

24 TCK User’s Guide for Technology Implementors DRAFT

#GBFUY
rebuild.html#GCLIZ
rebuild.html#GCLIZ

2. Set the webServerPort property to the port number where the web server that is configured with
the Vendor Implementation is running.
The default setting is 8080.

3. Set the jaxws.home property to the location where the Vendor Implementation is installed.
The default setting is ${webcontainer.home}. The value of this property must match the value of
the webcontainer.home property that is set in step g.

4. Set the jaxws.classes property to point to the Vendor Implementation classes/JAR files.
As an example, the ts.jte file contains the property jaxws.classes.ri, which contains the
classes/jar files that the Java EE 8 RI uses. The jaxws.classes.ri settings for the Java EE 8 RI web
container are as follows:

jaxws.home.ri=${webcontainer.home.ri}
jaxws.lib.ri=${jaxws.home.ri}/modules
endorsed.dirs.ri=${jaxws.home.ri}/modules/endorsed

jaxws.classes.ri=${endorsed.dirs.ri}/webservices-api-osgi.jar:
${endorsed.dirs.ri}/jaxb-api-osgi.jar:
${jaxws.lib.ri}/webservices-osgi.jar:
${jaxws.lib.ri}/jaxb-osgi.jar:
${jaxws.lib.ri}/gmbal.jar:
${jaxws.lib.ri}/management-api.jar:
${jaxws.lib.ri}/mimepull.jar

The jaxws.classes.ri settings if using the Apache Tomcat web container with the Standalone
JAX-WS 2.3 RI would be as follows:

jaxws.home.ri=${webcontainer.home.ri}
jaxws.lib.ri=${jaxws.home.ri}/shared/lib
endorsed.dirs.ri=${jaxws.home.ri}/common/endorsed
jaxws.classes.ri=${endorsed.dirs.ri}/jaxws-api.jar:
${endorsed.dirs.ri}/jaxb-api.jar:
${jaxws.lib.ri}/FastInfoset.jar:${jaxws.lib.ri}/gmbal-api-only.jar:\
${jaxws.lib.ri}/ha-api.jar:${jaxws.lib.ri}/jakarta.annotation-api.jar:\
${jaxws.lib.ri}/javax.xml.soap-api.jar:${jaxws.lib.ri}/jaxb-core.jar:\
${jaxws.lib.ri}/jaxb-impl.jar:${jaxws.lib.ri}/jaxb-jxc.jar:\
${jaxws.lib.ri}/jaxb-xjc.jar:${jaxws.lib.ri}/jaxws-rt.jar:\
${jaxws.lib.ri}/jaxwstck.jar:${jaxws.lib.ri}/jaxws-tools.jar:\
${jaxws.lib.ri}/jsr181-api.jar:${jaxws.lib.ri}/mail.jar:\
${jaxws.lib.ri}/management-api.jar:${jaxws.lib.ri}/mimepull.jar:\
${jaxws.lib.ri}/policy.jar:${jaxws.lib.ri}/resolver.jar:\
${jaxws.lib.ri}/saaj-impl.jar:${jaxws.lib.ri}/sdo-eclipselink-plugin.jar:\
${jaxws.lib.ri}/stax2-api.jar:${jaxws.lib.ri}/stax-ex.jar:\
${jaxws.lib.ri}/streambuffer.jar:${jaxws.lib.ri}/woodstox-core-asl.jar:

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation

DRAFT TCK User’s Guide for Technology Implementors 25

#BABDJAHI

5. Verify that the tools.jar property is set to the location of the tools.jar file that is distributed
with Java SE.

6. Set the impl.vi, impl.vi.deploy.dir, impl.vi.host, and impl.vi.port properties to the supported
web container, deploy directory, host and port for the Vendor Implementation.
As an example, the ts.jte file contains the settings for the Java EE 8 RI, which are as follows:

webcontainer.home.ri=/sun/javaee6
impl.ri.deploy.dir=${webcontainer.home.ri}/domains/domain1/autodeploy
impl.ri=glassfish.xml
impl.ri.host=${webServerHost.2}
impl.ri.port=${webServerPort.2}

The RI settings using the Apache Tomcat web container with the Standalone JAX-WS 2.3 RI
would be as follows:

webcontainer.home.ri=/tomcat
impl.ri=tomcat
impl.ri.deploy.dir=${webcontainer.home.ri}/webapps
impl.ri.host=${webServerHost.2}
impl.ri.port=${webServerPort.2}

7. Set the webcontainer.home property to the location where the web container for the Vendor
Implementation is installed.

8. Set the porting.ts.url.class.1 property to the porting implementation class that is used for
obtaining URLs.
The default setting for the JAX-WS RI porting implementation is:

com.sun.ts.lib.implementation.sun.common.SunRIURL

9. Set the user and password properties to the user name and password used for the basic
authentication tests.
The default setting for both is j2ee.

10. Set the authuser and authpassword properties to the user name and password used for the basic
authentication tests.
The default setting for both is javajoe.

11. Set the http.server.supports.endpoint.publish property based on whether Endpoint Publish
APIs are supported on the container.

12. If using Java SE 8 or above, verify that the property endorsed.dirs is set to the location of the RI
API jars for those technologies you wish to override. Java SE 8 contains an implementation of
JAX-WS 2.2 which will conflict with JAX-WS 2.3, therefore this property must be set so that JAX-

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation

26 TCK User’s Guide for Technology Implementors DRAFT

WS 2.3 will be used during the building of tests and during test execution.

3. Edit the catalog file <TS_HOME>/src/com/sun/ts/tests/jaxws/common/xml/catalog /META-INF/jax-ws-

catalog.xml, replacing the host and port settings of systemId with the value of your host and port
setting where the WSDL is published.

4. Provide your own implementation of the porting package interface provided with the JAX-WS TCK.
The porting package interface, TSURLInterface.java, obtains URL strings for web resources in an
implementation-specific manner. API documentation for the TSURLInterface.java porting package
interface is available in the JAX-WS TCK documentation bundle.
The <TS_HOME>/bin/jaxws-url-props.dat file contains the webservice endpoint and WSDL URLs that
the TCK tests use when running against the JAX-WS RI. In the porting package that the TCK uses, the
URLs are returned as is since this is the form that the JAX-WS RI expects. You may need an alternate
form of these URLs in order to run the TCK tests in your environment. However, you MUST NOT
modify the jaxws-url-props.dat file, but instead make any necessary changes in your own porting
implementation class to transform the URLs appropriately for your environment.

4.3 Additional JAX-WS TCK Instructions

4.3.1 Configuring Your Environment to Rebuild and Run the JAX-WS TCK
Against the JAX-WS RI

This section describes the steps needed to configure the JAX-WS TCK so that the tests can be rebuilt
(using the Vendor Implementation toolset), and then deployed and run against the JAX-WS Reference
Implementation.

If you are not ready to proceed with this portion of the testing process, skip this section for now and
proceed to Configuring and Starting Your Application Server or Servers. After configuring your
environment, continue with the instructions in Using the JavaTest Harness Software.

In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <TS_HOME> becomes $TS_HOME on Solaris/Linux and %TS_HOME% on
Windows XP/Vista. In addition, the forward slashes (/) used in all of the examples
need to be replaced with backslashes (\) for Windows XP/Vista. Finally, be sure to use
the appropriate separator for your operating system when specifying multiple path
entries (; on Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead. For example, if the Java EE 8 RI installation is C:\JavaEE8, you must
specify it as C:\\JavaEE8 or C:/JavaEE8.

1. Set the following environment variables in your shell environment:

4.3 Additional JAX-WS TCK Instructions

DRAFT TCK User’s Guide for Technology Implementors 27

#GCFOI
#GBFUY

1. JAVA_HOME to the directory in which Java SE is installed

2. TS_HOME to the directory in which the JAX-WS TCK 2.3 software is installed

3. ANT_HOME should not be set in your environment. If it is set, unset it.

2. Edit your <TS_HOME>/bin/ts.jte file and set the following environment variables:

1. Set the webServerHost property to the hostname where the web server for the Vendor
Implementation is running.
The default setting is localhost.

2. Set the webServerPort property to the port number where the web server for the Vendor
Implementation is running.
The default setting is`8080`

3. Set the webServerHost.2 property to the hostname where the web server for the JAX-WS RI is
running.

4. Set the webServerPort.2 property to the port number where the web server for the JAX-WS RI is
running.

5. Set the jaxws.home property to the location where the Vendor Implementation is installed.
The default setting is ${webcontainer.home}. The value of this property must match the value of
the webcontainer.home property that is set in step m.

6. Set the jaxws.classes property to point to the Vendor Implementation classes/JAR files.

7. Set the jaxws.home.ri property to the location where the JAX-WS RI is installed.
The default setting is ${webcontainer.home.ri}. The value of this property must match the value
of the webcontainer.home.ri property that is set in step n.

8. The jaxws.classes.ri property is already configured to point to the JAX-WS RI classes/JAR files.
No changes are necessary for this property.

9. Set the wsgen.ant.classname property to the Vendor Implementation class that mimics the JAX-
WS RI Ant task, which in turn calls the wsgen Java-to-WSDL tool.

10. Set the wsimport.ant.classname property to the Vendor Implementation class that mimics the
JAX-WS RI Ant task, which in turn calls the wsimport WSDL-to-Java tool.

11. Set the impl.vi, impl.vi.deploy.dir, impl.vi.host, and impl.vi.port properties to the supported
web container, deploy directory, host and port used for the Vendor Implementation.

12. Set the impl.ri, impl.ri.deploy.dir, impl.ri.host, and impl.ri.port properties to the supported
web container, deploy directory, host and port used for the JAX-WS Reference Implementation.
The supported web container for standalone web applications is the Java EE 8 RI. The default
settings for these properties are as follows:

impl.ri.deploy.dir=${webcontainer.home.ri}/domains/domain1/autodeploy
impl.ri=glassfish.xml
impl.ri.host=${webServerHost.2}
impl.ri.port=${webServerPort.2}

4.3 Additional JAX-WS TCK Instructions

28 TCK User’s Guide for Technology Implementors DRAFT

#BABEGFEB
#BABCAAFJ

13. Set the webcontainer.home property to the location where the web container for the Vendor
Implementation is installed.

14. Set the webcontainer.home.ri property to the location where the web container for the JAX-WS
Reference Implementation is installed.

15. Set the porting.ts.url.class.1 property to your porting implementation class that is used for
obtaining URLs.
The default setting points to the JAX-WS RI porting implementation which is:

com.sun.ts.lib.implementation.sun.common.SunRIURL

16. Set the porting.ts.url.class.2 property to the JAX-WS RI porting implementation class that is
used for obtaining URLs.
No changes are necessary for this property.

17. Set the user and password properties to the user name and password used for the basic
authentication tests.
The default setting for both is j2ee.

18. Set the authuser and authpassword properties to the user name and password used for the basic
authentication tests.
The default setting for both is javajoe.

19. Set the http.server.supports.endpoint.publish property based on whether Endpoint Publish
APIs are supported on the container.

20. If using Java SE 8 or above, verify that the property endorsed.dirs is set to the location of the VI
API jars for those technologies you wish to override. Java SE 8 contains an implementation of
JAX-WS 2.2 which will conflict with JAX-WS 2.3, therefore this property must be set so that JAX-
WS 2.3 will be used during the building of tests and during test execution.

21. If using Java SE 8 or above, verify that the property endorsed.dirs.ri is set to the location of the
RI API jars for those technologies you wish to override. Java SE 8 contains an implementation of
JAX-WS 2.2 which will conflict with JAX-WS 2.3, therefore this property must be set so that JAX-
WS 2.3 will be used during the building of tests and during test execution.

3. Edit the catalog file <TS_HOME>/src/com/sun/ts/tests/jaxws/common/xml/catalog /META-INF/jax-ws-

catalog.xml, replacing the host and port settings of systemId with the value of your host and port
setting where the WSDL is published.

4.3.2 Configuring Your Environment to Simultaneously Run the JAX-WS TCK
Against the VI and the JAX-WS RI

This section describes the steps needed to configure the JAX-WS TCK so that all tests can be run;
forward tests against the Vendor Implementation and reverse tests against the JAX-WS Reference
Implementation.

4.3 Additional JAX-WS TCK Instructions

DRAFT TCK User’s Guide for Technology Implementors 29

Since the JAX-WS TCK needs to be tested against both the JAX-WS Reference Implementation and the
Vendor Implementation, two separate Web servers need to be configured. Two individual Web servers
are required, and the same steps, below, must be performed to configure each Web server.

If you are not going to perform this kind of testing at this time, skip this section and proceed to
Configuring and Starting Your Application Server or Servers, otherwise perform the steps described in
the following sections:

• Configuring Your Environment to Run the JAX-WS TCK Against the Vendor Implementation

• Configuring Your Environment to Rebuild and Run the JAX-WS TCK Against the JAX-WS RI

4.3.3 Configuring and Starting Your Application Server or Servers

Complete the following two procedures to configure your application server environments for the RI
and VI.

4.3.3.1 To Configure the Vendor Implementation as your VI Environment

1. Set the following environment variables in your shell environment:

1. JAVA_HOME to the directory in which Java SE is installed

2. TS_HOME to the directory in which the JAX-WS TCK 2.3 software is installed

3. ANT_HOME should not be set in your environment. If it is set, unset it.

2. Ensure that the ts.jte settings for Vendor specific properties have been configured.

3. Run the ant config.vi target to configure for the Vendor Implementation.

cd <TS_HOME>/bin
<TS_HOME>/tools/ant/bin/ant config.vi

4.3.3.2 To Configure the JAX-WS Reference Implementation as your RI
Environment

1. Set the following environment variables in your shell environment:

1. JAVA_HOME to the directory in which Java SE is installed

2. TS_HOME to the directory in which the JAX-WS TCK 2.3 software is installed

3. ANT_HOME should not be set in your environment. If it is set, unset it.

4.3 Additional JAX-WS TCK Instructions

30 TCK User’s Guide for Technology Implementors DRAFT

#GCFOI
#GCLHU
#GCLHF

2. Ensure that the ts.jte settings for RI specific properties have been configured.

3. Run the ant config.ri target to configure for RI implementation.

cd <TS_HOME>/bin
<TS_HOME>/tools/ant/bin/ant config.ri

4.3.4 Deploying the JAX-WS TCK Tests

The JAX-WS TCK provides an automatic way of deploying both the prebuilt and Vendor-built archives
to the configured web container or container by using deployment handlers.

The handler file (<TS_HOME>/bin/xml/impl/glassfish/deploy.xml) is written to be used with the Java EE 8
RI. If the Vendor chooses not to use Java EE 8 RI with their implementation, or chooses to rebuild the
JAX-WS TCK tests using some other method than the infrastructure provided, they should create their
own version handler file to provide this functionality.

This section describes the various commands used for deploying the WAR files to the configured web
container.

• Generic Deployment Command Scenarios

• Deploying the JAX-WS TCK Prebuilt Archives

• Deploying the Rebuilt JAX-WS TCK Tests Against the JAX-WS Reference Implementation

4.3.4.1 Generic Deployment Command Scenarios

The keywords system property enables you to deploy a subset of the tests that would normally be
deployed in batch mode by means of <TS_HOME>/tools/ant/bin/ant deploy. To specify it, add the option
-Dkeywords=`value to the `ant command, where value is either forward, reverse, or all. The supported
values control the directions in which the rebuildable tests are deployed.

• Setting this property to all (the default) deploys both the prebuilt and Vendor build tests.

• Setting the property to forward deploys the prebuilt tests in the forward direction only.

• Setting the property to reverse deploys the Vendor rebuilt tests in the reverse direction only.

4.3 Additional JAX-WS TCK Instructions

DRAFT TCK User’s Guide for Technology Implementors 31

#GCLJG
#GCLIW
#GCLIL

4.3.4.1.1 To Deploy all the WAR Files From the <TS_HOME>/dist Directory to Both Web Servers

Enter the following command:

<TS_HOME>/tools/ant/bin/ant deploy.all

or

<TS_HOME>/tools/ant/bin/ant -Dkeywords=all deploy.all

4.3.4.1.2 To Deploy a Single Test Directory in the Forward Direction

Enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/jaxws/api/jakarta_xml_ws/Dispatch
<TS_HOME>/tools/ant/bin/ant -Dkeywords=forward deploy

4.3.4.1.3 To Deploy a Subset of Test Directories in the Reverse Direction

Enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/jaxws/api
<TS_HOME>/tools/ant/bin/ant -Dkeywords=reverse deploy

The -Dkeywords option is supported by the deploy, undeploy, deploy.all, and
undeploy.all commands.

4.3.4.2 Deploying the JAX-WS TCK Prebuilt Archives

This section explains issues regarding the deployment of the JAX-WS TCK prebuilt archives. Before
conducting any deployment, ensure that your environment has been configured by following the
instructions in either the Configuring Your Environment to Run the JAX-WS TCK Against the JAX-WS
Reference Implementation or the Configuring Your Environment to Run the JAX-WS TCK Against the
Vendor Implementation sections.

The <TS_HOME>/dist directory contains all the WAR files for the JAX-WS TCK web service endpoint tests

4.3 Additional JAX-WS TCK Instructions

32 TCK User’s Guide for Technology Implementors DRAFT

#GBFVU
#GBFVU
#GCLHU
#GCLHU

that have been compiled and generated using the JAX-WS Reference Implementation and packaged for
deployment on a Servlet-compliant web container using the standard Web Archive (WAR) format.

These WAR files contain only portable artifacts for all the TCK web service endpoint tests, and are
tailored to run against the JAX-WS Reference Implementation via the web.xml file in addition to a
runtime file, sun-jaxws.xml. These WAR files allow you to deploy (without any additional setup or
modification) against the JAX-WS Reference Implementation to test the various features and
functionality of this implementation.

A Vendor is required to deploy the prebuilt WAR files as is on their JAX-WS implementation without
any changes to the WAR archives with the exception of replacing and/or removing only the web.xml and
the sun-jaxws.xml files.

To deploy the tests, the Vendor should perform a deployment using either the deploy or deployall batch
command as described in Generic Deployment Command Scenarios, and specify the
-Dkeywords=forward option.

4.3.4.3 Deploying the Rebuilt JAX-WS TCK Tests Against the JAX-WS Reference
Implementation

This section describes how to deploy the Vendor rebuilt JAX-WS TCK tests against the Vendor
Implementation. Before conducting the deployment, ensure that you have followed the instructions in
Configuring Your Environment to Run the JAX-WS TCK Against the JAX-WS Reference Implementation.

This deployment scenario assumes that the Vendor has rebuilt all the JAX-WS TCK tests using the
existing infrastructure, and that the WAR files exist alongside the prebuilt war files in the
<TS_HOME>/dist directory. The rebuilt WAR files will be prepended with the text vi_built_.

If the Vendor chooses some other method of rebuilding the tests, they may still be able to use this
deployment method as long as the WAR files are built correctly and are prepended with the text
vi_built_. Refer to the Appendix B, "Rebuilding the JAX-WS TCK Using the Vendor’s Toolset" to learn
about rebuilding the JAX-WS TCK tests.

To deploy the tests, the Vendor should perform a deployment using either the deploy or deployall batch
command, as described in Generic Deployment Command Scenarios, and specify the
-Dkeywords=reverse option

4.4 Custom Configuration Handlers
Configuration handlers are used to configure and unconfigure a XML Web Services 2.3 implementation
during the certification process. These are similar to deployment handlers but used for configuration.
A configuration handler is an Ant build file that contains at least the required targets listed below:

4.4 Custom Configuration Handlers

DRAFT TCK User’s Guide for Technology Implementors 33

#GCLJG
#GBFVU
rebuild.html#GCLIZ
#GCLJG

• config.vi - to configure the vendor implementation

• clean.vi - to unconfigure the vendor implementation

These targets are called from the <TS_HOME>/bin/build.xml file and call down into the implementation-
specific configuration handlers.

To provide your own configuration handler, create a config.vi.xml file with the necessary
configuration steps for your implementation and place the file under the
<TS_HOME>/bin/xml/impl/<your_impl> directory.

For more information, you may wish to view <TS_HOME>/bin/xml/impl/glassfish/config.vi.xml, the
configuration file for Eclipse EE4J Jakarta EE 8 Compatible Implementation, Eclipse GlassFish.

4.5 Custom Deployment Handlers
Deployment handlers are used to deploy and undeploy the WAR files that contain the tests to be run
during the certification process. A deployment handler is an Ant build file that contains at least the
required targets listed in the table below.

The XML Web Services TCK provides these deployment handlers:

• <TS_HOME>/bin/xml/impl/none/deploy.xml

• <TS_HOME>/bin/xml/impl/glassfish/deploy.xml

• <TS_HOME>/bin/xml/impl/tomcat/deploy.xml

The deploy.xml files in each of these directories are used to control deployment to a specific container
(no deployment, deployment to the Eclipse GlassFish Web container, deployment to the Tomcat Web
container) denoted by the name of the directory in which each deploy.xml file resides. The primary
build.xml file in the <TS_HOME>/bin directory has a target to invoke any of the required targets (-deploy,
-undeploy, -deploy.all, -undeploy.all).

4.5.1 To Create a Custom Deployment Handler

To deploy tests to another XML Web Services implementation, you must create a custom handler.

1. Create a new directory in the <TS_HOME>/bin/xml/impl directory tree. For example, create the
<TS_HOME>/bin/xml/impl/my_deployment_handler directory. Replace my_deployment_handler with the
value of the impl.vi property that you set in Step 5 of the configuration procedure described in
Section 4.2, "Configuring Your Environment to Repackage and Run the TCK Against the Vendor
Implementation".

2. Copy the deploy.xml file from the <TS_HOME>/bin/xml/impl/none directory to the directory that you
created.

4.5 Custom Deployment Handlers

34 TCK User’s Guide for Technology Implementors DRAFT

3. Modify the required targets in the deploy.xml file. This is what the deploy.xml file for the "none"
deployment handler looks like.

<project name="No-op Deployment" default="deploy">
 <!-- No-op deployment target -->
 <target name="-deploy">
 <echo message="No deploy target implemented for this deliverable"/>
 </target>
 <target name="-undeploy">
 <echo message="No undeploy target implemented for this deliverable"/>
 </target>
 <target name="-deploy.all">
 <echo message="No deploy target implemented for this deliverable"/>
 </target>
 <target name="-undeploy.all">
 <echo message="No undeploy target implemented for this deliverable"/>
 </target>
</project>

Although this example just echoes messages, it does include the four required Ant targets (-deploy,
-undeploy, -deploy.all, -undeploy.all) that your custom deploy.xml file must contain. With this as
your starting point, look at the required targets in the deploy.xml files in the Tomcat and Eclipse
Glassfish directories for guidance as you create the same targets for the Web container in which
you will run your implementation of XML Web Services.

The following Ant targets can be called from anywhere under the <TS_HOME>/src directory:

• deploy

• undeploy

• deploy.all

• undeploy.all

The deploy.all and undeploy.all targets can also be called from the <TS_HOME>/bin directory.

The targets in the deploy.xml file are never called directly. They are called indirectly
by the targets listed above.

4.6 Using the JavaTest Harness Software
There are two general ways to run the XML Web Services TCK test suite using the JavaTest harness
software:

• Through the JavaTest GUI; if using this method, please continue on to Section 4.7, "Using the

4.6 Using the JavaTest Harness Software

DRAFT TCK User’s Guide for Technology Implementors 35

#GBFWG

JavaTest Harness Configuration GUI."

• In JavaTest batch mode, from the command line in your shell environment; if using this method,
please proceed directly to Chapter 5, "Executing Tests."

4.7 Using the JavaTest Harness Configuration GUI
You can use the JavaTest harness GUI to modify general test settings and to quickly get started with the
default XML Web Services TCK test environment. This section covers the following topics:

• Configuration GUI Overview

• Starting the Configuration GUI

• To Configure the JavaTest Harness to Run the XML Web Services TCK Tests

• Modifying the Default Test Configuration

It is only necessary to proceed with this section if you want to run the JavaTest
harness in GUI mode. If you plan to run the JavaTest harness in command-line mode,
skip the remainder of this chapter, and continue with Chapter 5, "Executing Tests."

4.7.1 Configuration GUI Overview

In order for the JavaTest harness to execute the test suite, it requires information about how your
computing environment is configured. The JavaTest harness requires two types of configuration
information:

• Test environment: This is data used by the tests. For example, the path to the Java runtime, how to
start the product being tested, network resources, and other information required by the tests in
order to run. This information does not change frequently and usually stays constant from test run
to test run.

• Test parameters: This is information used by the JavaTest harness to run the tests. Test parameters
are values used by the JavaTest harness that determine which tests in the test suite are run, how
the tests should be run, and where the test reports are stored. This information often changes from
test run to test run.

The first time you run the JavaTest harness software, you are asked to specify the test suite and work
directory that you want to use. (These parameters can be changed later from within the JavaTest
harness GUI.)

Once the JavaTest harness GUI is displayed, whenever you choose Start, then Run Tests to begin a test
run, the JavaTest harness determines whether all of the required configuration information has been
supplied:

4.7 Using the JavaTest Harness Configuration GUI

36 TCK User’s Guide for Technology Implementors DRAFT

#GBFWG
using.html#GBFWO
#GBFVA
#GBFVD
#GBFVX
#GBFUU
using.html#GBFWO

• If the test environment and parameters have been completely configured, the test run starts
immediately.

• If any required configuration information is missing, the configuration editor displays a series of
questions asking you the necessary information. This is called the configuration interview. When
you have entered the configuration data, you are asked if you wish to proceed with running the
test.

4.7.2 Starting the Configuration GUI

Before you start the JavaTest harness software, you must have a valid test suite and Java SE 8 installed
on your system.

The XML Web Services TCK includes an Ant script that is used to execute the JavaTest harness from the
<TS_HOME> directory. Using this Ant script to start the JavaTest harness is part of the procedure
described in Section 4.7.3, "To Configure the JavaTest Harness to Run the TCK Tests."

When you execute the JavaTest harness software for the first time, the JavaTest harness displays a
Welcome dialog box that guides you through the initial startup configuration.

• If it is able to open a test suite, the JavaTest harness displays a Welcome to JavaTest dialog box that
guides you through the process of either opening an existing work directory or creating a new
work directory as described in the JavaTest online help.

• If the JavaTest harness is unable to open a test suite, it displays a Welcome to JavaTest dialog box
that guides you through the process of opening both a test suite and a work directory as described
in the JavaTest documentation.

After you specify a work directory, you can use the Test Manager to configure and run tests as
described in Section 4.7.3, "To Configure the JavaTest Harness to Run the TCK Tests."

4.7.3 To Configure the JavaTest Harness to Run the TCK Tests

The answers you give to some of the configuration interview questions are specific to your site. For
example, the name of the host on which the JavaTest harness is running. Other configuration
parameters can be set however you wish. For example, where you want test report files to be stored.

Note that you only need to complete all these steps the first time you start the JavaTest test harness.
After you complete these steps, you can either run all of the tests by completing the steps in Section 5.1,
"Starting JavaTest," or run a subset of the tests by completing the steps in Section 5.2, "Running a
Subset of the Tests."

1. Change to the <TS_HOME>/bin directory and start the JavaTest test harness:
cd <TS_HOME>/bin

4.7 Using the JavaTest Harness Configuration GUI

DRAFT TCK User’s Guide for Technology Implementors 37

#GBFVX
#GBFVX
using.html#GBFUZ
using.html#GBFUZ
using.html#GBFWM
using.html#GBFWM

ant gui

2. From the File menu, click Open Quick Start Wizard.
The Welcome screen displays.

3. Select Start a new test run, and then click Next.
You are prompted to create a new configuration or use a configuration template.

4. Select Create a new configuration, and then click Next.
You are prompted to select a test suite.

5. Accept the default suite (<TS_HOME>/src), and then click Next.
You are prompted to specify a work directory to use to store your test results.

6. Type a work directory name or use the Browse button to select a work directory, and then click
Next.
You are prompted to start the configuration editor or start a test run. At this point, the XML Web
Services TCK is configured to run the default test suite.

7. Deselect the Start the configuration editor option, and then click Finish.

8. Click Run Tests, then click Start.
The JavaTest harness starts running the tests.

9. To reconfigure the JavaTest test harness, do one of the following:

◦ Click Configuration, then click New Configuration.

◦ Click Configuration, then click Change Configuration.

10. Click Report, and then click Create Report.

11. Specify the directory in which the JavaTest test harness will write the report, and then click OK.
A report is created, and you are asked whether you want to view it.

12. Click Yes to view the report.

4.7.4 Modifying the Default Test Configuration

The JavaTest GUI enables you to configure numerous test options. These options are divided into two
general dialog box groups:

• Group 1: Available from the JavaTest Configure/Change Configuration submenus, the following
options are displayed in a tabbed dialog box:

◦ Tests to Run

◦ Exclude List

◦ Keywords

◦ Prior Status

◦ Test Environment

4.7 Using the JavaTest Harness Configuration GUI

38 TCK User’s Guide for Technology Implementors DRAFT

◦ Concurrency

◦ Timeout Factor

• Group 2: Available from the JavaTest Configure/Change Configuration/Other Values submenu, or
by pressing Ctrl+E, the following options are displayed in a paged dialog box:

◦ Environment Files

◦ Test Environment

◦ Specify Tests to Run

◦ Specify an Exclude List

Note that there is some overlap between the functions in these two dialog boxes; for those functions
use the dialog box that is most convenient for you. Please refer to the JavaTest Harness documentation
or the online help for complete information about these various options.

4.7 Using the JavaTest Harness Configuration GUI

DRAFT TCK User’s Guide for Technology Implementors 39

5 Executing Tests
The XML Web Services TCK uses the JavaTest harness to execute the tests in the test suite. For detailed
instructions that explain how to run and use JavaTest, see the JavaTest User’s Guide and Reference in
the documentation bundle.

This chapter includes the following topics:

• Starting JavaTest

• Running a Subset of the Tests

• Running the TCK Against your selected CI

• Running the TCK Against a Vendor’s Implementation

• Test Reports

The instructions in this chapter assume that you have installed and configured your
test environment as described in Chapter 3, "Installation," and Chapter 4, "Setup and
Configuration,", respectively.

As explained in Appendix B, "Packaging the Test Applications in Servlet-Compliant WAR Files With VI-
Specific Information," the XML Web Services TCK introduces the concept of repackaging the TCK tests.

5.1 Starting JavaTest
There are two general ways to run the XML Web Services TCK using the JavaTest harness software:

• Through the JavaTest GUI

• From the command line in your shell environment

The ant command referenced in the following two procedures and elsewhere in this
guide is the Apache Ant build tool, which will need to be downloaded separately. The
build.xml file in <TS_HOME>/bin contains the various Ant targets for the XML Web
Services TCK test suite.

5.1.1 To Start JavaTest in GUI Mode

Execute the following commands:

5.1 Starting JavaTest

40 TCK User’s Guide for Technology Implementors DRAFT

#GBFUZ
#GBFWM
#GCLRR
#GCLRZ
#GBFVK
install.html#GBFTP
config.html#GBFVV
config.html#GBFVV
rebuild.html#GCLIZ
rebuild.html#GCLIZ

cd <TS_HOME>/bin
ant gui

5.1.2 To Start JavaTest in Command-Line Mode

As explained in Appendix B, the JAX-WS TCK introduces the concept of rebuilding the TCK tests. To
provide the user an ability to run the TCK against the Vendor Implementation and the Reference
Implementation, the use of the keywords feature (in GUI mode) or option `-Dkeywords=`value (in
command line mode) is provided.

By default, the TCK is configured to run all tests in both directions for all the tests except the signature
tests. Setting keywords allows the user to change which tests will be run.

• Setting the keywords property to all (the default) does not filter out any tests, and results in the
prebuilt tests to be run in the forward direction, and the Vendor rebuilt tests to be run in the
reverse direction.

• Setting keywords to forward causes the prebuilt tests to be run in the forward direction only.

• Setting keywords to reverse causes the Vendor rebuilt tests to be run in the reverse direction only.

Refer to the JavaTest User’s Guide and Reference in the documentation bundle for information
regarding how to configure the keywords feature in GUI mode. For command line mode, add the
following to your command line -Dkeywords=``value, where value is either forward, reverse, or all.

1. Change to any subdirectory under <TS_HOME>/src/com/sun/ts/tests.

2. Start JavaTest using the following command:

<TS_HOME>/tools/ant/bin/ant [-Dkeywords=forward|reverse|all] runclient

The -Dkeywords option is supported by the runclient command in batch mode only, not
in GUI mode.

Example 5-1 Running JAX-WS TCK Signature Tests

To run the JAX-WS TCK signature tests, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/signaturetest/jaxws
<TS_HOME>/tools/ant/bin/ant [-Dkeywords=forward|reverse|all] runclient

5.1 Starting JavaTest

DRAFT TCK User’s Guide for Technology Implementors 41

rebuild.html#GCLIZ

Example 5-2 Running a Single Test Directory

To run a single test directory in the forward direction, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/jaxws/api/jakarta_xml_ws/Dispatch
<TS_HOME>/tools/ant/bin/ant -Dkeywords=forward runclient

Example 5-3 Running a Subset of Test Directories

To run a subset of test directories in the reverse direction, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/jaxws/api
<TS_HOME>/tools/ant/bin/ant -Dkeywords=reverse runclient

5.2 Running a Subset of the Tests
Use the following modes to run a subset of the tests:

• Section 5.2.1, "To Run a Subset of Tests in GUI Mode"

• Section 5.2.2, "To Run a Subset of Tests in Command-Line Mode"

• Section 5.2.3, "To Run a Subset of Tests in Batch Mode Based on Prior Result Status"

5.2.1 To Run a Subset of Tests in GUI Mode

1. From the JavaTest main menu, click Configure, then click Change Configuration, and then click
Tests to Run.
The tabbed Configuration Editor dialog box is displayed.

2. Click Specify from the option list on the left.

3. Select the tests you want to run from the displayed test tree, and then click Done.
You can select entire branches of the test tree, or use Ctrl+Click or Shift+Click to select multiple
tests or ranges of tests, respectively, or select just a single test.

4. Click Save File.

5. Click Run Tests, and then click Start to run the tests you selected.
Alternatively, you can right-click the test you want from the test tree in the left section of the

5.2 Running a Subset of the Tests

42 TCK User’s Guide for Technology Implementors DRAFT

#GBFVT
#GBFWK
#GBFVL

JavaTest main window, and choose Execute These Tests from the menu.

6. Click Report, and then click Create Report.

7. Specify the directory in which the JavaTest test harness will write the report, and then click OK
A report is created, and you are asked whether you want to view it.

8. Click Yes to view the report.

5.2.2 To Run a Subset of Tests in Command-Line Mode

1. Change to the directory containing the tests you want to run.

2. Start the test run by executing the following command:

ant runclient

The tests in the directory and its subdirectories are run.

5.2.3 To Run a Subset of Tests in Batch Mode Based on Prior Result Status

You can run certain tests in batch mode based on the test’s prior run status by specifying the
priorStatus system property when invoking ant

Invoke ant with the priorStatus property.

The accepted values for the priorStatus property are any combination of the following:

• fail

• pass

• error

• notRun

For example, you could run all the XML Web Services tests with a status of failed and error by invoking
the following commands:

ant -DpriorStatus="fail,error" runclient

Note that multiple priorStatus values must be separated by commas.

5.2 Running a Subset of the Tests

DRAFT TCK User’s Guide for Technology Implementors 43

5.3 Running the TCK Against another CI
Some test scenarios are designed to ensure that the configuration and deployment of all the prebuilt
XML Web Services TCK tests against one Compatible Implementation are successful operating with
other compatible implementations, and that the TCK is ready for compatibility testing against the
Vendor and Compatible Implementations.

1. Verify that you have followed the configuration instructions in Section 4.1, "Configuring Your
Environment to Run the TCK Against the Compatible Implementation."

2. If required, verify that you have completed the steps in Section 4.3.2, "Deploying the Prebuilt
Archives."

3. Run the tests, as described in Section 5.1, "Starting JavaTest," and, if desired, Section 5.2, "Running a
Subset of the Tests."

5.4 Running the TCK Against a Vendor’s Implementation
This test scenario is one of the compatibility test phases that all Vendors must pass.

1. Verify that you have followed the configuration instructions in Section 4.2, "Configuring Your
Environment to Repackage and Run the TCK Against the Vendor Implementation."

2. If required, verify that you have completed the steps in Section 4.3.3, "Deploying the Test
Applications Against the Vendor Implementation."

3. Run the tests, as described in Section 5.1, "Starting JavaTest," and, if desired, Section 5.2, "Running a
Subset of the Tests."

5.5 Test Reports
A set of report files is created for every test run. These report files can be found in the report directory
you specify. After a test run is completed, the JavaTest harness writes HTML reports for the test run.
You can view these files in the JavaTest ReportBrowser when running in GUI mode, or in the web
browser of your choice outside the JavaTest interface.

To see all of the HTML report files, enter the URL of the report.html file. This file is the root file that
links to all of the other HTML reports.

The JavaTest harness also creates a summary.txt file in the report directory that you can open in any
text editor. The summary.txt file contains a list of all tests that were run, their test results, and their
status messages.

5.3 Running the TCK Against another CI

44 TCK User’s Guide for Technology Implementors DRAFT

config.html#GBFVU
config.html#GBFVU
config.html#GCLIW
config.html#GCLIW
#GBFUZ
#GBFWM
#GBFWM
config.html#GCLHU
config.html#GCLHU
config.html#GCLIL
config.html#GCLIL
#GBFUZ
#GBFWM
#GBFWM

5.5.1 Creating Test Reports

Use the following modes to create test reports:

• Section 5.5.1.1, "To Create a Test Report in GUI Mode"

• Section 5.5.1.2, "To Create a Test Report in Command-Line Mode"

5.5.1.1 To Create a Test Report in GUI Mode

1. From the JavaTest main menu, click Report, then click Create Report.
You are prompted to specify a directory to use for your test reports.

2. Specify the directory you want to use for your reports, and then click OK.
Use the Filter list to specify whether you want to generate reports for the current configuration, all
tests, or a custom set of tests.
You are asked whether you want to view report now.

3. Click Yes to display the new report in the JavaTest ReportBrowser.

5.5.1.2 To Create a Test Report in Command-Line Mode

1. Specify where you want to create the test report.

1. To specify the report directory from the command line at runtime, use:

ant -Dreport.dir="report_dir"

Reports are written for the last test run to the directory you specify.

2. To specify the default report directory, set the report.dir property in <TS_HOME>/bin/ts.jte.
For example:

report.dir="/home/josephine/reports"

3. To disable reporting, set the report.dir property to "none", either on the command line or in
<TS_HOME>/bin/ts.jte.
For example:

ant -Dreport.dir="none"

5.5 Test Reports

DRAFT TCK User’s Guide for Technology Implementors 45

#GBFVH
#GBFVC

5.5.2 Viewing an Existing Test Report

Use the following modes to view an existing test report:

• Section 5.5.2.1, "To View an Existing Report in GUI Mode"

• Section 5.5.2.2, "To View an Existing Report in Command-Line Mode"

5.5.2.1 To View an Existing Report in GUI Mode

1. From the JavaTest main menu, click Report, then click Open Report.
You are prompted to specify the directory containing the report you want to open.

2. Select the report directory you want to open, and then click Open.
The selected report set is opened in the JavaTest ReportBrowser.

5.5.2.2 To View an Existing Report in Command-Line Mode

Use the Web browser of your choice to view the report.html file in the report directory you specified
from the command line or in <TS_HOME>/bin/ts.jte.

5.6 Running the JAX-WS TCK Against the JAX-WS RI
This test scenario is ensures that the configuration and deployment of all the prebuilt JAX-WS TCK tests
against the JAX-WS Reference Implementation are successful, and that the TCK is ready for
compatibility testing against the Vendor and Reference Implementations.

1. Verify that you have followed the configuration instructions in Configuring Your Environment to
Run the JAX-WS TCK Against the JAX-WS Reference Implementation.

2. Specify forward for the keywords option.

3. Verify that you have completed the steps in Deploying the JAX-WS TCK Prebuilt Archives.

4. Run the tests, as described in Starting JavaTest and, if desired, Running a Subset of the Tests.

5.7 Running the JAX-WS TCK Against a Vendor’s
Implementation
This test scenario is one of the compatibility test phases that all Vendors must pass. This ensures that
the prebuilt JAX-WS TCK tests built against the JAX-WS RI can be successfully run against the Vendor

5.6 Running the JAX-WS TCK Against the JAX-WS RI

46 TCK User’s Guide for Technology Implementors DRAFT

#GBFVO
#GBFWB
config.html#GBFVU
config.html#GBFVU
config.html#GCLIW
#GBFUZ
#GBFWM

Implementation (VI).

1. Verify that you have followed the configuration instructions in Configuring Your Environment to
Run the JAX-WS TCK Against the Vendor Implementation.

2. Specify forward for the keywords option.

3. Verify that you have completed the steps in Deploying the JAX-WS TCK Prebuilt Archives

4. Run the tests, as described in Starting JavaTest and, if desired, Running a Subset of the Tests.

5.8 Running the Rebuilt JAX-WS TCK Against the JAX-WS
RI
This test scenario is one of the compatibility test phases that all Vendors must pass. This ensures that
the JAX-WS TCK tests that are rebuilt using the Vendor’s toolset can be successfully run against the
Reference Implementation.

1. Verify that you have followed the configuration instructions in Configuring Your Environment to
Rebuild and Run the JAX-WS TCK Against the JAX-WS RI.

2. Refer to Appendix B, to learn about rebuilding the JAX-WS TCK tests.

3. Specify reverse for the keywords option.

4. Verify that you have completed the steps in Deploying the Rebuilt JAX-WS TCK Tests Against the
JAX-WS Reference Implementation.

5. Run the tests, as described in Starting JavaTest and, if desired, Running a Subset of the Tests.

5.9 Testing Interoperability Between a Vendor
Implementation and the JAX-WS Reference
Implementation
1. Specify all for the keywords option.

2. Verify that you have completed the steps in Deploying the JAX-WS TCK Prebuilt Archives.

3. Verify that you have completed the steps in Deploying the Rebuilt JAX-WS TCK Tests Against the
JAX-WS Reference Implementation

4. Run the tests, as described in Starting JavaTest and, if desired, Running a Subset of the Tests.

5.8 Running the Rebuilt JAX-WS TCK Against the JAX-WS RI

DRAFT TCK User’s Guide for Technology Implementors 47

config.html#GCLHU
config.html#GCLHU
config.html#GCLIW
#GBFUZ
#GBFWM
config.html#GCLHF
config.html#GCLHF
rebuild.html#GCLIZ
config.html#GCLIL
config.html#GCLIL
#GBFUZ
#GBFWM
config.html#GCLIW
config.html#GCLIL
config.html#GCLIL
#GBFUZ
#GBFWM

6 Debugging Test Problems
There are a number of reasons that tests can fail to execute properly. This chapter provides some
approaches for dealing with these failures. Please note that most of these suggestions are only relevant
when running the test harness in GUI mode.

This chapter includes the following topics:

• Overview

• Test Tree

• Folder Information

• Test Information

• Report Files

• Configuration Failures

6.1 Overview
The goal of a test run is for all tests in the test suite that are not filtered out to have passing results. If
the root test suite folder contains tests with errors or failing results, you must troubleshoot and correct
the cause to satisfactorily complete the test run.

• Errors: Tests with errors could not be executed by the JavaTest harness. These errors usually occur
because the test environment is not properly configured.

• Failures: Tests that fail were executed but had failing results.

The Test Manager GUI provides you with a number of tools for effectively troubleshooting a test run.
See the JavaTest User’s Guide and JavaTest online help for detailed descriptions of the tools described
in this chapter. Ant test execution tasks provide command-line users with immediate test execution
feedback to the display. Available JTR report files and log files can also help command-line users
troubleshoot test run problems.

For every test run, the JavaTest harness creates a set of report files in the reports directory, which you
specified by setting the report.dir property in the <TS_HOME>/bin/ts.jte file. The report files contain
information about the test description, environment, messages, properties used by the test, status of
the test, and test result. After a test run is completed, the JavaTest harness writes HTML reports for the
test run. You can view these files in the JavaTest ReportBrowser when running in GUI mode, or in the
Web browser of your choice outside the JavaTest interface. To see all of the HTML report files, enter
the URL of the report.html file. This file is the root file that links to all of the other HTML reports.

The JavaTest harness also creates a summary.txt file in the report directory that you can open in any
text editor. The summary.txt file contains a list of all tests that were run, their test results, and their

6.1 Overview

48 TCK User’s Guide for Technology Implementors DRAFT

#GBFYP
#GBFVF
#GBFWI
#GBFVP
#GBFVZ
#GBFYF

status messages.

The work directory, which you specified by setting the work.dir property in the <TS_HOME>/bin/ts.jte
file, contains several files that were deposited there during test execution: harness.trace, log.txt,
lastRun.txt, and testsuite. Most of these files provide information about the harness and environment
in which the tests were executed.

You can set harness.log.traceflag=true in <TS_HOME>/bin/ts.jte to get more debugging
information.

If a large number of tests failed, you should read Configuration Failures to see if a configuration issue
is the cause of the failures.

6.2 Test Tree
Use the test tree in the JavaTest GUI to identify specific folders and tests that had errors or failing
results. Color codes are used to indicate status as follows:

• Green: Passed

• Blue: Test Error

• Red: Failed to pass test

• White: Test not run

• Gray: Test filtered out (not run)

6.3 Folder Information
Click a folder in the test tree in the JavaTest GUI to display its tabs.

Choose the Error and the Failed tabs to view the lists of all tests in and under a folder that were not
successfully run. You can double-click a test in the lists to view its test information.

6.4 Test Information
To display information about a test in the JavaTest GUI, click its icon in the test tree or double-click its
name in a folder status tab. The tab contains detailed information about the test run and, at the bottom
of the window, a brief status message identifying the type of failure or error. This message may be
sufficient for you to identify the cause of the error or failure.

6.2 Test Tree

DRAFT TCK User’s Guide for Technology Implementors 49

#GBFYF

If you need more information to identify the cause of the error or failure, use the following tabs listed
in order of importance:

• Test Run Messages contains a Message list and a Message section that display the messages
produced during the test run.

• Test Run Details contains a two-column table of name/value pairs recorded when the test was run.

• Configuration contains a two-column table of the test environment name/value pairs derived from
the configuration data actually used to run the test.

You can set harness.log.traceflag=true in <TS_HOME>/bin/ts.jte to get more debugging
information.

6.5 Report Files
Report files are another good source of troubleshooting information. You may view the individual test
results of a batch run in the JavaTest Summary window, but there are also a wide range of HTML
report files that you can view in the JavaTest ReportBrowser or in the external browser or your choice
following a test run. See Section 5.5, "Test Reports," for more information.

6.6 Configuration Failures
Configuration failures are easily recognized because many tests fail the same way. When all your tests
begin to fail, you may want to stop the run immediately and start viewing individual test output.
However, in the case of full-scale launching problems where no tests are actually processed, report
files are usually not created (though sometimes a small harness.trace file in the report directory is
written).

6.5 Report Files

50 TCK User’s Guide for Technology Implementors DRAFT

using.html#GBFVK

A Frequently Asked Questions
This appendix contains the following questions.

• Where do I start to debug a test failure?

• How do I restart a crashed test run?

• What would cause tests be added to the exclude list?

A.1 Where do I start to debug a test failure?
From the JavaTest GUI, you can view recently run tests using the Test Results Summary, by selecting
the red Failed tab or the blue Error tab. See Chapter 6, "Debugging Test Problems," for more
information.

A.2 How do I restart a crashed test run?
If you need to restart a test run, you can figure out which test crashed the test suite by looking at the
harness.trace file. The harness.trace file is in the report directory that you supplied to the JavaTest GUI
or parameter file. Examine this trace file, then change the JavaTest GUI initial files to that location or to
a directory location below that file, and restart. This will overwrite only .jtr files that you rerun. As
long as you do not change the value of the GUI work directory, you can continue testing and then later
compile a complete report to include results from all such partial runs.

A.3 What would cause tests be added to the exclude list?
The JavaTest exclude file (<TS_HOME>/bin/ts.jtx) contains all tests that are not required to be run. The
following is a list of reasons for a test to be included in the Exclude List:

• An error in a reference implementation that does not allow the test to execute properly has been
discovered.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test has been discovered.

A.1 Where do I start to debug a test failure?

DRAFT TCK User’s Guide for Technology Implementors 51

#GBFYQ
#GBFYR
#GBFWU
debug.html#GBFUV

B Rebuilding the JAX-WS TCK Using the
Vendor’s Toolset
The JAX-WS 2.3 specification requires that each implementation has a way to generate WSDL from
Java, and to generate Java from WSDL. To verify that implementations do this in a compatible manner,
half of the tests in the JAX-WS TCK require that you first rebuild them using your generation tools.

This appendix contains the following sections:

• Overview

• Rebuilding the JAX-WS TCK Classes Using Ant

• Rebuilding the JAX-WS TCK Classes Manually

• wsgen Reference

• wsimport Reference

B.1 Overview
The set of prebuilt archives and classes that ship with the JAX-WS TCK were built using the JAX-WS
Reference Implementation tools (wsgen Reference and wsimport Reference), and must be deployed
and run against your implementation of JAX-WS. These tests are referred to as forward tests.

You must also rebuild the archives and classes associated with these tests using your generation tools,
and then deploy and run them against the JAX-WS Reference Implementation. These tests are known
as reverse tests. The test names of all the tests that will be run against the Reference Implementation
are identical to the forward test names found in the client Java source files, with the added suffix of
_reverse. Essentially, for each forward test, there is an identical reverse test. This ensures that the same
behaviors are verified on each JAX-WS implementation.

The same test client source file is used for each forward and reverse test. Likewise,
they also share the same test description, which only appears under the forward test
name in the client Java source file.

To be able to run the entire test suite in a single run, you must have your implementation and the
Reference Implementation configured simultaneously. Please see Configuring Your Environment to
Simultaneously Run the JAX-WS TCK Against the VI and the JAX-WS RI for more information.

B.1 Overview

52 TCK User’s Guide for Technology Implementors DRAFT

#GCLIO
#GCLLW
#GCLOO
#GCQJY
#GCQMM
#GCQJY
#GCQMM
config.html#GCLIK
config.html#GCLIK

B.2 Rebuilding the JAX-WS TCK Classes Using Ant
Instead of rebuilding and overwriting the TCK prebuilt classes and archives for each test directory, the
JAX-WS TCK provides a way for you to plug in your generation tools so that you may leverage the
existing build infrastructure that creates new classes and archives alongside those that ship with the
JAX-WS TCK.

1. Create your own version of the Ant tasks WsImport and WsGen.
Documentation for these tasks can be found later in this appendix:

◦ wsgen Reference

◦ wsimport Reference

2. Set the wsimport.ant.classname and wsgen.ant.classname properties in <TS_HOME>/bin/ts.jte to point
to your implementations of the above two tasks.

3. If using Java SE 8 or above:

1. Verify that the property endorsed.dirs is set to the location of the VI API jars for those
technologies you wish to override. Java SE 8 contains an implementation of JAX-WS 2.2 which
will conflict with JAX-WS 2.3, therefore this property must be set so that JAX-WS 2.3 will be used
during the building of tests and during test execution.

2. Set the java.endorsed.dirs property in the ANT_OPTS environment variable to point to the
location in which only the JAX-WS 2.3 API jars exist; for example:

ANT_OPTS="-Djava.endorsed.dirs=PATH_TO_YOUR_ENDORSED_DIR"

4. Change to the jaxws test directory and execute the following build target:

<TS_HOME>/tools/ant/bin/ant -Dbuild.vi=true clean build

The clean and build targets may be executed in any subdirectory under
<TS_HOME>/src/com/sun/ts/tests/jaxws as long as the -Dbuild.vi=true system property is also set.
Failure to set this property while invoking these targets will result in the prebuilt classes and
archives being deleted and/or overwritten.
After completing the steps above, rebuilt class files will appear under <TS_HOME>/classes_vi_built
so as not to affect class files that were generated and compiled with the JAX-WS Reference
Implementation. Rebuilt archives will be prefixed with the string, vi_built, and will be created in
the same directory (under <TS_HOME>/dist) as those built using the Reference Implementation.

None of the JAX-WS test client source code or the service endpoint implementation
test source code is to be altered in any way by a Vendor as part of the rebuild process.

Example B-1 Rebuilding a Single Test Directory

B.2 Rebuilding the JAX-WS TCK Classes Using Ant

DRAFT TCK User’s Guide for Technology Implementors 53

#GCQJY
#GCQMM

To further illustrate this process, the example below walks you through the rebuilding of a single test
directory.

1. Change to the <TS_HOME>/src/com/sun/ts/tests/jaxws/ee/w2j/document/literal/httptest directory.

2. Run <TS_HOME>/tools/ant/bin/ant llc.
The following is a listing of classes built using the JAX-WS RI.

$TS_HOME/tools/ant/bin/ant llc
/var/tmp/jaxwstck/classes/com/sun/ts/tests/jaxws/ee/w2j/document/literal/httptest

total 60
-rw-r--r-- 1 root root 13825 Apr 12 08:32 Client.class
-rw-r--r-- 1 root root 2104 Apr 12 08:32 HelloImpl.class
-rw-r--r-- 1 root root 1153 Apr 12 08:32 Hello.class
-rw-r--r-- 1 root root 793 Apr 12 08:32 HelloOneWay.class
-rw-r--r-- 1 root root 796 Apr 12 08:32 HelloRequest.class
-rw-r--r-- 1 root root 799 Apr 12 08:32 HelloResponse.class
-rw-r--r-- 1 root root 1564 Apr 12 08:32 HttpTestService.class
-rw-r--r-- 1 root root 2845 Apr 12 08:32 ObjectFactory.class
drwxr-xr-x 3 root root 512 Apr 12 08:32 generated_classes/
-rw-r--r-- 1 root root 293 Apr 12 08:32 package-info.class
drwxr-xr-x 3 root root 512 Apr 12 08:31 generated_sources/

3. Run <TS_HOME>/tools/ant/bin/ant lld.
This shows you the listing of archives built using the JAX-WS RI.

$TS_HOME/tools/ant/bin/ant lld
/var/tmp/jaxwstck/dist/com/sun/ts/tests/jaxws/ee/w2j/document/literal/httptest

total 286
-rw-r--r-- 1 root root 113318 Apr 12 08:32 WSW2JDLHttpTest.war

4. Once your <TS_HOME>/bin/ts.jte file is configured and your implementations of the wsgen and
wsimport tasks are specified, run the following command:

<TS_HOME>/tools/ant/bin/ant -Dbuild.vi=true build

This builds the classes and archives using your implementation. Once this has been done
successfully, proceed to the next step.

5. Run <TS_HOME>/tools/ant/bin/ant -Dbuild.vi=true llc.
This shows you the listing of classes (under <TS_HOME>/classes_vi_built) built using your
Implementation.

B.2 Rebuilding the JAX-WS TCK Classes Using Ant

54 TCK User’s Guide for Technology Implementors DRAFT

$TS_HOME/tools/ant/bin/ant -Dbuild.vi=true llc
/var/tmp/jaxwstck/classes_vi_built/com/sun/ts/tests/jaxws/ee/w2j/document/literal/http
test

total 60
-rw-r--r-- 1 root root 1153 Apr 12 12:01 Hello.class
-rw-r--r-- 1 root root 793 Apr 12 12:01 HelloOneWay.class
-rw-r--r-- 1 root root 796 Apr 12 12:01 HelloRequest.class
-rw-r--r-- 1 root root 799 Apr 12 12:01 HelloResponse.class
-rw-r--r-- 1 root root 1564 Apr 12 12:01 HttpTestService.class
-rw-r--r-- 1 root root 2845 Apr 12 12:01 ObjectFactory.class
drwxr-xr-x 3 root root 512 Apr 12 12:01 generated_classes/
-rw-r--r-- 1 root root 293 Apr 12 12:01 package-info.class
drwxr-xr-x 3 root root 512 Apr 12 12:01 generated_sources/
-rw-r--r-- 1 root root 2104 Apr 12 08:33 HelloImpl.class
-rw-r--r-- 1 root root 13825 Apr 12 08:33 Client.class

6. Run <TS_HOME>/tools/ant/bin/ant lld.
This shows the listing of all archives and JAX-WS RI deployment plan descriptors for this test
directory. Those built using your implementation are prepended with vi_built_.

$TS_HOME/tools/ant/bin/ant lld
/var/tmp/jaxwstck/dist/com/sun/ts/tests/jaxws/ee/w2j/document/literal/httptest

total 286
-rw-r--r-- 1 root root 22676 Apr 12 12:01 vi_built_WSW2JDLHttpTest.war
-rw-r--r-- 1 root root 113318 Apr 12 08:32 WSW2JDLHttpTest.war

7. Running the clean target while specifying the build.vi system property will only clean the classes
and archives that you rebuilt. To clean them, run:

<TS_HOME>/tools/ant/bin/ant -Dbuild.vi=true clean

Notice that the vi_built classes and archives are deleted.

Next Steps

Once you have successfully built the archives using your implementation, you can then proceed to the
configuration section to learn how to deploy these archives and how to run the reverse tests.

B.2 Rebuilding the JAX-WS TCK Classes Using Ant

DRAFT TCK User’s Guide for Technology Implementors 55

B.3 Rebuilding the JAX-WS TCK Classes Manually
When rebuilding the JAX-WS TCK classes, it is strongly recommended that you use the procedure
described in the previous section, Rebuilding the JAX-WS TCK Classes Using Ant. However, if you
choose not to use the existing Ant-based TCK infrastructure to rebuild the tests, you can use the
following procedure to rebuild the classes manually.

1. Run your tools in each of the JAX-WS test directories under <TS_HOME>/src/com/sun/ts/tests/jaxws,
being sure to place all newly compiled classes under <TS_HOME>/classes_vi_built.
Also be sure not to overwrite any of the compiled classes under <TS_HOME>/classes.

2. Use the existing customization files and/or any handler files that exist in each of the test directories.

3. Package the newly generated artifacts and all the other required classes into new WAR files,
prepeded with the string vi_built_.
These WAR files should reside in the same directory with the prebuilt WAR files under
<TS_HOME>/dist directory.

Next Steps

As part of the manual rebuild process, you may also need to modify some of the following files.
However, this is not recommended, since doing so can result in the JAX-WS TCK not being able to be
built or run the prebuilt archives shipped with the TCK. The files you may need to modify are:

• XML files in <TS_HOME>/bin/xml; these files are used to generate the various WARs.

• Any build.xml file in <TS_HOME>/src/com/sun/ts/tests/jaxws.

• The <TS_HOME>/src/com/sun/ts/tests/jaxws/common/common.xml file, which is the main build file used
for the jaxws build process. This common.xml file contains all the Ant tasks specific to invoking the
JAX-WS TCK jaxws tools.

None of the JAX-WS TCK test client source code or the service endpoint
implementation test source code is to be altered in any way by a Vendor as part of the
rebuild process.

Once you have successfully built the archives, you can proceed to the Chapter 4, "Setup and
Configuration" to learn how to deploy these archives and how to run the reverse tests.

B.4 wsgen Reference
The wsgen tool generates JAX-WS portable artifacts used in JAX-WS Web services. The tool reads a Web
service endpoint class and generates all the required artifacts for Web service deployment and
invocation.

B.3 Rebuilding the JAX-WS TCK Classes Manually

56 TCK User’s Guide for Technology Implementors DRAFT

#GCLLW
config.html#GBFVV
config.html#GBFVV

B.4.1 wsgen Syntax

wsgen [options] SEI

where SEI is the service endpoint interface implementation class.

Table B-1 wsgen Command Syntax

Option Description

-classpath path Specify where to find input class files.

-cp path Same as -classpath path.

-d directory Specify where to place generated output files.

-extension Allow vendor extensions (functionality not specified by the
specification). Use of extensions may result in applications that are not
portable or may not interoperate with other implementations.

-help Display help.

-keep Keep generated files.

-r directory Used only in conjunction with the -wsdl option. Specify where to place
generated resource files such as WSDLs.

-s directory Specify where to place generated source files.

-verbose Output messages about what the compiler is doing.

-version Print version information. Use of this option will ONLY print version
information; normal processing will not occur.

-wsdl[:`protocol]` By default wsgen does not generate a WSDL file. This flag is optional
and will cause wsgen to generate a WSDL file and is usually only used
so that the developer can look at the WSDL before the endpoint is
deployed. The protocol is optional and is used to specify what protocol
should be used in the wsdl:binding. Valid protocols include: soap1.1
and Xsoap1.2. The default is soap1.1. Xsoap1.2 is not standard and can
only be used in conjunction with the -extension option.

-servicename name Used only in conjunction with the -wsdl option. Used to specify a
particular wsdl:service name to be generated in the WSDL; for
example:

-servicename "{http://mynamespace/}MyService"

B.4 wsgen Reference

DRAFT TCK User’s Guide for Technology Implementors 57

Option Description

-portname name Used only in conjunction with the -wsdl option. Used to specify a
particular wsdl:port name to be generated in the WSDL; for example:

 -portname "{http://mynamespace/}MyPort"

B.4.2 wsgen Ant Task

An Ant task for the wsgen tool is provided along with the tool. The attributes and elements supported by
the Ant task are listed below.

<wsgen
 sei="..."
 destdir="directory for generated class files"
 classpath="classpath" | cp="classpath"
 resourcedestdir="directory for generated resource files such as WSDLs"
 sourcedestdir="directory for generated source files"
 keep="true|false"
 verbose="true|false"
 genwsdl="true|false"
 protocol="soap1.1|Xsoap1.2"
 servicename="..."
 portname="...">
 extension="true|false"
 <classpath refid="..."/>
</wsgen>

Table B-2 wsgen Attributes and Elements

Attribute Description Command Line

sei Name of the service endpoint interface
implementation class.

SEI

destdir Specify where to place output generated classes. -d

classpath Specify where to find input class files. -classpath

cp Same as -classpath. -cp

B.4 wsgen Reference

58 TCK User’s Guide for Technology Implementors DRAFT

Attribute Description Command Line

resourcedestdir Used only in conjunction with the -wsdl option.
Specify where to place generated resource files such
as WSDLs.

-r

sourcedestdir Specify where to place generated source files. -s

keep Keep generated files. -keep

verbose Output messages about what the compiler is doing. -verbose

genwsdl Specify that a WSDL file should be generated. -wsdl

protocol Used in conjunction with genwsdl to specify the
protocol to use in the wsdl:binding. Value values are
soap1.1`or `Xsoap1.2, default is soap1.1. Xsoap1.2`is
not standard and can only be used in conjunction
with the `-extensions option.

-wsdl:soap1.1

servicename Used in conjunction with the genwsdl option. Used to
specify a particular wsdl:service name for the
generated WSDL; for example:

servicename="{http://mynamespace/}MyService
"

-servicename

portname Used in conjunction with the genwsdl option. Used to
specify a particular wsdl:portmame name for the
generated WSDL; for example:

portname="{http://mynamespace/}MyPort"

-servicename

extension Allow vendor extensions (functionality not specified
by the specification). Use of extensions may result in
applications that are not portable or may not
interoperate with other implementations.

-extension

The classpath attribute is a path-like structure (http://ant.apache.org/manual/using.html#path) and can
also be set by using nested <classpath> elements. Before this task can be used, a <taskdef> element
needs to be added to the project as shown below.

<taskdef name="wsgen" classname="com.sun.tools.ws.ant.WsGen">
 <classpath path="jaxws.classpath"/>
</taskdef>

where jaxws.classpath is a reference to a path-like structure

B.4 wsgen Reference

DRAFT TCK User’s Guide for Technology Implementors 59

(http://ant.apache.org/manual/using.html#path), defined elsewhere in the build environment, and
contains the list of classes required by the JAX-WS tools.

B.4.3 wsgen Example

<wsgen
 resourcedestdir=""
 sei="fromjava.server.AddNumbersImpl">
 <classpath refid="compile.classpath"/>
</wsgen>

B.5 wsimport Reference
The wsimport tool generates JAX-WS portable artifacts, such as:

• Service Endpoint Interface (SEI)

• Service

• Exception class mapped from wsdl:fault (if any)

• Async Reponse Bean derived from response wsdl:message (if any)

• JAXB generated value types (mapped Java classes from schema types)

These artifacts can be packaged in a WAR file with the WSDL and schema documents along with the
endpoint implementation to be deployed.

The wsimport tool can be launched using the command line script wsimport.sh (UNIX) or wsimport.bat
(Windows). There is also an Ant task to import and compile the WSDL. See the below for further
details.

This section contains the following topics:

• wsimport Syntax

• wsimport Ant Task

• wsimport Examples

B.5.1 wsimport Syntax

B.5 wsimport Reference

60 TCK User’s Guide for Technology Implementors DRAFT

#GCQLU
#GCQLY
#GCQKP

wsimport [options] wsdl

where wsdl is the WSDL file.

Table B-3 wsimport Command Syntax

Option Description

-d directory Specify where to place generated output files.

-b path Specify external JAX-WS or JAXB binding files (Each <file>
must have its own -b).

-B jaxbOption Pass this option to JAXB schema compiler

-catalog Specify catalog file to resolve external entity references, it
supports TR9401, XCatalog, and OASIS XML Catalog format.
Please read the Catalog Support document or see the
wsimport_catalog sample.

-extension Allow vendor extensions (functionality not specified by the
specification). Use of extensions may result in applications
that are not portable or may not interoperate with other
implementations.

-help Display help.

-httpproxy:`host:`port Specify an HTTP proxy server (port defaults to 8080).

-keep Keep generated files.

-p Specifying a target package with this command-line option
overrides any WSDL and schema binding customization for
package name and the default package name algorithm
defined in the specification.

-s directory Specify where to place generated source files.

-verbose Output messages about what the compiler is doing.

-version Print version information.

-wsdllocation location @WebService.wsdlLocation and
@WebServiceClient.wsdlLocation value.

-target Generate code for the specified version of the JAX-WS
specification. For example, a value of 2.0 generates code
that is compliant with the JAX-WS 2.0 Specification. The
default value is 2.3.

-quiet Suppress wsimport output.

-XadditionalHeaders Map the headers not bound to request or response message
to Java method parameters.

B.5 wsimport Reference

DRAFT TCK User’s Guide for Technology Implementors 61

Option Description

-Xauthfile File to carry authorization information in the format
http://username:password@example.org/stock?wsdl. Default
value is $HOME/.metro/auth.

-Xdebug Print debug information.

-Xno-addressing-databinding Enable binding of W3C EndpointReferenceType to Java.

-Xnocompile Do not compile generated Java files.

-XdisableSSLHostnameVerification Disables the SSL Hostname verification while fetching the
wsdls.

Multiple JAX-WS and JAXB binding files can be specified using the -b option, and they can be used to
customize various things, such as package names and bean names. More information on JAX-WS and
JAXB binding files can be found in the customization documentation.

B.5.2 wsimport Ant Task

An Ant task for the wsimport tool is provided along with the tool. The attributes and elements supported
by the Ant task are listed below.

B.5 wsimport Reference

62 TCK User’s Guide for Technology Implementors DRAFT

<wsimport
 wsdl="..."
 destdir="directory for generated class files"
 sourcedestdir="directory for generated source files"
 keep="true|false"
 extension="true|false"
 verbose="true|false"
 version="true|false"
 wsdlLocation="..."
 catalog="catalog file"
 package="package name"
 target="target release"
 binding="..."
 quiet="true|false"
 xadditionalHeaders="true|false"
 xauthfile="authorization file"
 xdebug="true|false"
 xNoAddressingDatabinding="true|false"
 xnocompile="true|false"
 <binding dir="..." includes="..." />
 <arg value="..."/>
 <xjcarg value="..."/>
 <xmlcatalog refid="another catalog file"/>>
</wsimport>

Table B-4 wsimport Attributes and Elements

Attribute Description Command Line

wsdl WSDL file. WSDL

destdir Specify where to place output
generated classes

-d

sourcedestdir Specify where to place generated
source files, keep is turned on with
this option

-s

keep Keep generated files, turned on
with sourcedestdir option

-keep

verbose Output messages about what the
compiler is doing

-verbose

binding Specify external JAX-WS or JAXB
binding files

-b

B.5 wsimport Reference

DRAFT TCK User’s Guide for Technology Implementors 63

Attribute Description Command Line

extension Allow vendor extensions
(functionality not specified by the
specification). Use of extensions
may result in applications that are
not portable or may not
interoperate with other
implementations

-extension

wsdllocation The WSDL URI passed through this
option is used to set the value of
@WebService.wsdlLocation and
@WebServiceClient.wsdlLocation
annotation elements on the
generated SEI and Service
interface

-wsdllocation

catalog Specify catalog file to resolve
external entity references, it
supports TR9401, XCatalog, and
OASIS XML Catalog format.
Additionally, the Ant xmlcatalog
type can be used to resolve
entities. See the wsimport_catalog
sample for more information.

-catalog

package Specifies the target package -p

target Generate code for the specified
version of the JAX-WS
specification. For example, a value
of 2.0 generates code that is
compliant with the JAX-WS 2.0
Specification. The default value is
2.3.

-target

quiet Suppress wsimport output. -quiet

xadditionalHeaders Map headers not bound to request
or response message to Java
method parameters.

-XadditionalHeaders

xauthfile File to carry authorization
information in the format
http://username:password@example.
org/stock?wsdl.

-Xauthfile

xdebug Print debug information. -Xdebug

xNoAddressingDatabinding Enable binding of W3C
EndpointReferenceType to Java.

-Xno-addressing-databinding

xnocompile Do not compile generated Java
files.

-Xnocompile

B.5 wsimport Reference

64 TCK User’s Guide for Technology Implementors DRAFT

The binding attribute is like a path-like structure (http://ant.apache.org/manual/using.html#path) and
can also be set by using nested <binding> elements, respectively. Before this task can be used, a
<taskdef> element needs to be added to the project as shown below.

<taskdef name="wsimport" classname="com.sun.tools.ws.ant.WsImport">
 <classpath path="jaxws.classpath"/>
</taskdef>

where jaxws.classpath is a reference to a path-like structure
(http://ant.apache.org/manual/using.html#path), defined elsewhere in the build environment, and
contains the list of classes required by the JAX-WS tools.

B.5.2.1 Nested Elements

wsimport supports the following nested element parameters.

• binding: To specify more than one binding file at the same time, use a nested <binding> element,
which has the same syntax as <fileset>. See http://ant.apache.org/manual/Types/fileset.html for
more information.

• arg: Additional command line arguments passed to the wsimport Ant task. For details about the
syntax, see the arg section (http://ant.apache.org/manual/using.html#arg) in the Ant manual. This
nested element can be used to specify various options not natively supported in the wsimport Ant
task. For example, currently there is no native support for the -XdisableSSLHostnameVerification
command-line option for wsimport. This nested element can be used to pass –X command-line
options directly, as done with –XadditionalHeaders. To use any of these features from the wsimport
Ant task, you must specify the appropriate nested <arg> elements.

• xjcarg: The usage of xjcarg is similar to that of the <arg> nested element, except that these
arguments are passed directly to the XJC tool (JAXB Schema Compiler), which compiles the schema
that the WSDL references. For details about the syntax, see the arg section
(http://ant.apache.org/manual/using.html#arg) in the Ant manual.

• xmlcatalog: The xmlcatalog (http://ant.apache.org/manual/Types/xmlcatalog.html) element is used
to resolve entities when parsing schema documents.

B.5.3 wsimport Examples

B.5 wsimport Reference

DRAFT TCK User’s Guide for Technology Implementors 65

<wsimport
 destdir=""
 debug="true"
 wsdl="AddNumbers.wsdl"
 binding="custom.xml"/>

The above example generates client-side artifacts for AddNumbers.wsdl and stores .class files in the
destination directory using the custom.xml customization file. The classpath used is xyz.jar and
compiles with debug information on.

<wsimport
 keep="true"
 sourcedestdir=""
 destdir=""
 wsdl="AddNumbers.wsdl">
 <binding dir="${basedir}/etc" includes="custom.xml"/>
</wsimport>

The above example generates portable artifacts for AddNumbers.wsdl, stores .java files in the destination
directory, and stores .class files in the same directory.

B.5 wsimport Reference

66 TCK User’s Guide for Technology Implementors DRAFT

	TCK User’s Guide for Technology Implementors
	Table of Contents
	Eclipse Foundation
	Preface
	Who Should Use This Book
	Before You Read This Book
	Typographic Conventions
	Shell Prompts in Command Examples

	1 Introduction
	1.1 Compatibility Testing
	1.2 About the TCK
	1.3 Getting Started With the TCK

	2 Procedure for Certification
	2.1 Certification Overview
	2.2 Compatibility Requirements
	2.3 Test Appeals Process
	2.4 Specifications for Jakarta XML Web Services
	2.5 Libraries for Jakarta XML Web Services

	3 Installation
	3.1 Obtaining a Compatible Implementation
	3.2 Installing the Software

	4 Setup and Configuration
	4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation
	4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation
	4.3 Additional JAX-WS TCK Instructions
	4.4 Custom Configuration Handlers
	4.5 Custom Deployment Handlers
	4.6 Using the JavaTest Harness Software
	4.7 Using the JavaTest Harness Configuration GUI

	5 Executing Tests
	5.1 Starting JavaTest
	5.2 Running a Subset of the Tests
	5.3 Running the TCK Against another CI
	5.4 Running the TCK Against a Vendor’s Implementation
	5.5 Test Reports
	5.6 Running the JAX-WS TCK Against the JAX-WS RI
	5.7 Running the JAX-WS TCK Against a Vendor’s Implementation
	5.8 Running the Rebuilt JAX-WS TCK Against the JAX-WS RI
	5.9 Testing Interoperability Between a Vendor Implementation and the JAX-WS Reference Implementation

	6 Debugging Test Problems
	6.1 Overview
	6.2 Test Tree
	6.3 Folder Information
	6.4 Test Information
	6.5 Report Files
	6.6 Configuration Failures

	A Frequently Asked Questions
	A.1 Where do I start to debug a test failure?
	A.2 How do I restart a crashed test run?
	A.3 What would cause tests be added to the exclude list?

	B Rebuilding the JAX-WS TCK Using the Vendor’s Toolset
	B.1 Overview
	B.2 Rebuilding the JAX-WS TCK Classes Using Ant
	B.3 Rebuilding the JAX-WS TCK Classes Manually
	B.4 wsgen Reference
	B.5 wsimport Reference

