Technology Compatibility Kit User’s
Guide for Jakarta EE

Table of Contents

Eclipse Foundation
Preface
Who Should Use This Book
Before You Read This Book
Typographic Conventions
Shell Prompts in Command Examples
1 Introduction
1.1 Compatibility Testing
1.2 About the TCK
2 Procedure for Certification
2.1 Certification Overview
2.2 Compatibility Requirements
2.3 Test Appeals Process
2.4 Specifications for Debugging Support for Other Languages
2.5 Reference Runtime for Debugging Support for Other Languages 1.0
3 Installation
3.1 Obtaining the Reference Implementation
3.2 Installing the Software
4 Running the TCK
Debugging Support for Other Languages TCK Operating Assumptions
4.1 Generating the SMAPs to be Tested
4.2 Using the Debugging Support for Other Languages TCK to Test a Product
5 Assertions
5.1 Assertions Tested with the Debugging Support for Other Languages 1.0 TCK

N 9 O R W W NN DN e

T T O S Y
NG BN S TR &5 RIS TN S O NS JU N S N)

Eclipse Foundation

Eclipse Foundation

Technology Compatibility Kit User’s Guide for Debugging Support for Other Languages
Release 1.0 for Jakarta EE

September 2019

Technology Compatibility Kit User’s Guide for Debugging Support for Other Languages, Release 1.0 for
Jakarta EE

Copyright ?? 2017, 2019??0racle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 1

http://www.eclipse.org/legal/epl-2.0

Who Should Use This Book

Preface

The Technology Compatability Kit (TCK) documentation is part of the Java Enterprise
Edition contribution to the Eclipse Foundation and is not intended for use in relation
to Java Enterprise Edition or Java Licensee requirements. The documentation is in the
process of being revised to reflect the new Jakarta EE branding. Additional changes

O will be made as requirements and procedures evolve for Jakarta EE. Where
applicable, references to Java EE or Java Enterprise Edition should be considered
references to Jakarta EE.

Please see the Title page for additional license information.

This guide describes how to install, configure, and run the Technology Compatibility Kit (TCK) that is
used to test the Debugging Support for Other Languages (Debugging Support for Other Languages 1.0)
(JSR 045) technology.

The Debugging Support for Other Languages TCK is a portable, configurable automated test suite for
verifying the compatibility of a licensee’s implementation of the Debugging Support for Other
Languages 1.0 Specification (hereafter referred to as the licensee implementation). The Debugging
Support for Other Languages TCK uses the JavaTest harness version T.T.T to run the test suite

Note All references to specific Web URLs are given for the sake of your convenience in
locating the resources quickly. These references are always subject to changes that are
in many cases beyond the control of the authors of this guide.

Who Should Use This Book

This guide is for developers of the Debugging Support for Other Languages 1.0 technology to assist
them in running the test suite that verifies compatibility of their implementation of the Debugging
Support for Other Languages 1.0 Specification.

Before You Read This Book

You should be familiar with the Debugging Support for Other Languages 1.0 Specification, which can
be found at http://jcp.org/en/jsr/detail?id=045.

Before running the tests in the Debugging Support for Other Languages TCK, you should familiarize
yourself with the JavaTest documentation that is included in the Debugging Support for Other
Languages TCK documentation bundle.

2 Technology Compatibility Kit User’s Guide for Jakarta EE DRAFT

http://jcp.org/en/jsr/detail?id=045

Typographic Conventions

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

Convention Meaning Example

Boldface Boldface type indicates graphical user From the File menu, select Open Project.
interface elements associated with an
action, terms defined in text, or what A cache is a copy that is stored locally.
you type, contrasted with onscreen

computer output. machine_name% *su*
Password:
Monospace Monospace type indicates the names of Edit your .1login file.

files and directories, commands within
a paragraph, URLs, code in examples, Use 1s -a to list all files.
text that appears on the screen, or text

that you enter. machine_name% you have mail.
Italic Italic type indicates book titles, Read Chapter 6 in the User’s Guide.

emphasis, or placeholder variables for

which you supply particular values. Do not save the file.

The command to remove a file is rm filename.

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Bash shell shell_name-shell_version$
Bash shell for superuser shell_name-shell_version#

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 3

1.1 Compatibility Testing

1 Introduction

This chapter provides an overview of the principles that apply generally to all Technology
Compatibility Kits (TCKs) and describes the Debugging Support for Other Languages TCK 1.0 (JSR 045).
It also includes a high level listing of what is needed to get up and running with the Debugging Support
for Other Languages TCK.

This chapter includes the following topics:

» Compatibility Testing
* About the TCK

1.1 Compatibility Testing

Compatibility testing differs from traditional product testing in a number of ways. The focus of
compatibility testing is to test those features and areas of an implementation that are likely to differ
across other implementations, such as those features that:

* Rely on hardware or operating system-specific behavior

* Are difficult to port

* Mask or abstract hardware or operating system behavior
Compatibility test development for a given feature relies on a complete specification and reference

implementation for that feature. Compatibility testing is not primarily concerned with robustness,
performance, or ease of use.

1.1.1 Why Compatibility Testing is Important

Java platform compatibility is important to different groups involved with Java technologies for
different reasons:

* Compatibility testing ensures that the Java platform does not become fragmented as it is ported to
different operating systems and hardware environments.

* Compatibility testing benefits developers working in the Java programming language, allowing
them to write applications once and then to deploy them across heterogeneous computing
environments without porting.

» Compatibility testing allows application users to obtain applications from disparate sources and
deploy them with confidence.

* Conformance testing benefits Java platform implementors by ensuring a level playing field for all

4 Technology Compatibility Kit User’s Guide for Jakarta EE DRAFT

#GBFTK
#GBFQR

1.1 Compatibility Testing

Java platform ports.

1.1.2 TCK Compatibility Rules

Compatibility criteria for all technology implementations are embodied in the TCK Compatibility Rules
that apply to a specified technology. Each TCK tests for adherence to these Rules as described in
Chapter 2, "Procedure for Certification."

1.1.3 TCK Overview

A TCK is a set of tools and tests used to verify that a licensee’s implementation of a Java EE technology
conforms to the applicable specification. All tests in the TCK are based on the written specifications for
the Java platform. A TCK tests compatibility of a licensee’s implementation of the technology to the
applicable specification of the technology. Compatibility testing is a means of ensuring correctness,
completeness, and consistency across all implementations developed by technology licensees.

The set of tests included with each TCK is called the test suite. Most tests in a TCK’s test suite are self-
checking, but some tests may require tester interaction. Most tests return either a Pass or Fail status.
For a given platform to be certified, all of the required tests must pass. The definition of required tests
may change from platform to platform.

The definition of required tests will change over time. Before your final certification test pass, be sure
to download the latest Exclude List for the TCK you are using.

1.1.4 Java Community Process (JCP) Program and Compatibility Testing

The Java Community Process (JCP) program is the formalization of the open process that has been used
since 1995 to develop and revise Java technology specifications in cooperation with the international
Java community. The JCP program specifies that the following three major components must be
included as deliverables in a final Java technology release under the direction of the responsible
Expert Group:

* Technology Specification

» Reference Implementation

* Technology Compatibility Kit (TCK)

For further information about the JCP program, go to Java Community Process (http://jcp.org/en/home/
index).

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 5

rules.html#GBFSN
http://jcp.org/en/home/index
http://jcp.org/en/home/index

1.2 About the TCK

1.2 About the TCK

The Debugging Support for Other Languages TCK 1.0 is designed as a portable, configurable,
automated test suite for verifying the compatibility of a licensee’s implementation of the Debugging
Support for Other Languages 1.0 Specification.

The Debugging Support for Other Languages does not define APIs, but instead defines a data format
and process. As a result, the TCK is different than most, it verifies the data format, and thus indirectly
the process. The input to the process is source code in an arbitrary language, and thus the process
cannot be directly tested by the TCK.

1.2.1 TCK Specifications and Requirements
This section lists the applicable requirements and specifications.

 Specification Requirements: Software requirements for a Debugging Support for Other Languages
implementation are described in detail in the Debugging Support for Other Languages 1.0
Specification. Links to the Debugging Support for Other Languages specification and other product
information can be found at http://jcp.org/en/jsr/detail?id=045.

* Debugging Support for Other Languages Version: The Debugging Support for Other Languages TCK
1.0 is based on the Debugging Support for Other Languages Specification, Version 1.0.

* Reference Implementation: See the RI documentation page at http://javaee.github.io/glassfish for
more information.

6 Technology Compatibility Kit User’s Guide for Jakarta EE DRAFT

http://jcp.org/en/jsr/detail?id=045
http://javaee.github.io/glassfish

2.1 Certification Overview

2 Procedure for Certification

This chapter describes the compatibility testing procedure and compatibility requirements for
Debugging Support for Other Languages. This chapter contains the following sections:

* Certification Overview

» Compatibility Requirements

» Test Appeals Process

Specifications for Debugging Support for Other Languages

* Reference Runtime for Debugging Support for Other Languages 1.0

2.1 Certification Overview

The certification process for Debugging Support for Other Languages 1.0 consists of the following
activities:

 Install the appropriate version of the Technology Compatibility Kit (TCK) and execute it in
accordance with the instructions in this User’s Guide.

* Ensure that you meet the requirements outlined in ???Compatibility Requirements,??? below.

* Certify to the Java Partner organization that you have finished testing and that you meet all of the
compatibility requirements.

2.2 Compatibility Requirements

The compatibility requirements for Debugging Support for Other Languages 1.0 consist of meeting the
requirements set forth by the rules and associated definitions contained in this section.

2.2.1 Definitions

These definitions are for use only with these compatibility requirements and are not intended for any
other purpose.

Table 2-1 Definitions??

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 7

#CJAFFDGI
#CJAFGIGG
#CJAIIBDJ
#CJAJECIE
#CJABAHGI

2.2 Compatibility Requirements

Term

Conformance Tests

Documented

Exclude List

Maintenance Lead

Operating Mode

Product

Product Configuration

Resource

Rules

Security Resource

8 Technology Compatibility Kit User’s Guide for Jakarta EE

Definition

All tests in the Test Suite for an indicated Technology Under Test, as
distributed by the Maintenance Lead.

Made technically accessible and made known to users, typically by means
such as marketing materials, product documentation, usage messages, or
developer support programs.

The most current list of tests, distributed by the Maintenance Lead, that are
not required to be passed to certify conformance. The Maintenance Lead
may add to the Exclude List for that Test Suite as needed at any time, in
which case the updated Exclude List supplants any previous Exclude Lists
for that Test Suite.

The Java Community Process member responsible for maintaining the
Specification, reference implementation, and TCK for the Technology. Oracle
is the Maintenance Lead for Debugging Support for Other Languages.

Any Documented option of a Product that can be changed by a user in order
to modify the behavior of the Product.

For example, an Operating Mode can be binary (enable/disable
optimization), an enumeration (select from a list of protocols), or a range
(set the maximum number of active threads).

Note that an Operating Mode may be selected by a command line switch, an
environment variable, a GUI user interface element, a configuration or
control file, etc.

A licensee product in which the Technology Under Test is implemented or
incorporated, and that is subject to compatibility testing.

A specific setting or instantiation of an Operating Mode.
For example, a Product supporting an Operating Mode that permits user

selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

A Computational Resource, a Location Resource, or a Security Resource.

These definitions and rules in this Compatibility Requirements section of
this User???s Guide.

A security privilege or policy necessary for the proper execution of the Test
Suite.

For example, the user executing the Test Suite will need the privilege to
access the files and network resources necessary for use of the Product.

DRAFT

2.2 Compatibility Requirements

Term Definition

Specifications The documents produced through the Java Community Process that define a
particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in this
chapter.

Technology Specifications and a reference implementation produced through the Java
Community Process.

Technology Under Test Specifications and the reference implementation for Debugging Support for

Other Languages.

Test Suite The requirements, tests, and testing tools distributed by the Maintenance
Lead as applicable to a given Version of the Technology.

Version A release of the Technology, as produced through the Java Community
Process.

2.2.2 Rules for Debugging Support for Other Languages Products

The following rules apply for each version of an operating system, software component, and hardware
platform Documented as supporting the Product:

OL1 The Product must be able to satisfy all applicable compatibility requirements, including passing
all Conformance Tests, in every Product Configuration and in every combination of Product
Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

OL1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test Suite,
testing may always use a Product Configuration of that Operating Mode providing that Resource, even
if other Product Configurations do not provide that Resource. Notwithstanding such exceptions, each
Product must have at least one set of Product Configurations of such Operating Modes that is able to
pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy (i.e., Security Resource)
which has one or more Product Configurations that cause Conformance Tests to fail may be tested
using a Product Configuration that allows all Conformance Tests to pass.

OL1.2 A Product Configuration of an Operating Mode that causes the Product to report only version,
usage, or diagnostic information is exempted from these compatibility rules.

OL2 Some Conformance Tests may have properties that may be changed. Properties that can be

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 9

2.3 Test Appeals Process

changed are identified in the configuration interview. Apart from changing such properties and other
allowed modifications described in this User’s Guide (if any), no source or binary code for a
Conformance Test may be altered in any way without prior written permission. Any such allowed
alterations to the Conformance Tests would be posted to the Java Licensee Engineering web site and
apply to all licensees.

OL4 The Exclude List associated with the Test Suite cannot be modified.

OL5 The Maintenance Lead can define exceptions to these Rules. Such exceptions would be made
available to and apply to all licensees.

OL6 All hardware and software component additions, deletions, and modifications to a Documented
supporting hardware/software platform, that are not part of the Product but required for the Product
to satisfy the compatibility requirements, must be Documented and available to users of the Product.

For example, if a patch to a particular version of a supporting operating system is required for the
Product to pass the Conformance Tests, that patch must be Documented and available to users of the
Product.

OL7 The Product???s generated SMAPs must be as defined by the Specifications.

OL8 Except for tests specifically required by this TCK to be rebuilt (if any), the binary Conformance
Tests supplied as part of the Test Suite or as updated by the Maintenance Lead must be used to certify
compliance.

2.3 Test Appeals Process

Oracle has a well established process for managing challenges to its Java technology Test Suites and
plans to continue using a similar process in the future. Oracle, as Debugging Support for Other
Languages Maintenance Lead, will authorize representatives from the Java Partner Engineering group
to be the point of contact for all test challenges. Typically this will be the engineer assigned to a
company as part of its Debugging Support for Other Languages TCK support.

If a test is determined to be invalid in function or if its basis in the specification is suspect, the test may
be challenged by any licensee of the Debugging Support for Other Languages TCK. Each test validity
issue must be covered by a separate test challenge. Test validity or invalidity will be determined based
on its technical correctness such as:

» Test has bugs (i.e., program logic errors).

 Specification item covered by the test is ambiguous.

* Test does not match the specification.

» Test assumes unreasonable hardware and/or software requirements.

* Test is biased to a particular implementation.

10 Technology Compatibility Kit User’s Guide for Jakarta EE DRAFT

2.3 Test Appeals Process

Challenges based upon issues unrelated to technical correctness as defined by the specification will
normally be rejected.

Test challenges must be made in writing to Java Partner Engineering and include all relevant
information as described in Example 2-1, "Test Challenge Form". The process used to determine the
validity or invalidity of a test (or related group of tests) is described in Section 2.3.1, "TCK Test Appeals
Steps."

All tests found to be invalid will either be placed on the Exclude List for that version of the JAX-RS TCK
or have an alternate test made available.

» Tests that are placed on the Exclude List will be placed on the Exclude List within one business day
after the determination of test validity. The new Exclude List will be made available to all
Debugging Support for Other Languages licensees on the Debugging Support for Other Languages
website.

* Oracle, as Maintenance Lead has the option of creating alternative tests to address any challenge.
Alternative tests (and criteria for their use) will be made available on the Debugging Support for
Other Languages TCK website.

0 Passing an alternative test is deemed equivalent to passing the original test.

2.3.1 TCK Test Appeals Steps

1. Debugging Support for Other Languages TCK licensee writes a test challenge to Java Licensee
Engineering contesting the validity of one or a related set of Debugging Support for Other
Languages tests.

A detailed justification for why each test should be invalidated must be included with the challenge
as described in Example 2-1, "Test Challenge Form".

2. Java Licensee Engineering evaluates the challenge.
If the appeal is incomplete or unclear, it is returned to the submitting licensee for correction. If all
is in order, Java Licensee Engineering will check with the responsible test developers to review the
purpose and validity of the test before writing a response as described in Example 2-2, "Test
Challenge Response Form". Java Licensee Engineering will attempt to complete the response within
5 business days. If the challenge is similar to a previously rejected test challenge (i.e., same test and
justification), Java Licensee Engineering will send the previous response to the licensee.

3. The challenge and any supporting materials from test developers is sent to the specification
engineers for evaluation.
A decision of test validity or invalidity is normally made within 15 working days of receipt of the
challenge. All decisions will be documented with an explanation of why test validity was
maintained or rejected.

4. The licensee is informed of the decision and proceeds accordingly.
If the test challenge is approved and one or more tests are invalidated, Oracle places the tests on

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 11

#CJAFGAEE
#CJAJEAEI
#CJAJEAEI
#CJAFGAEE
#CJAGGCIF
#CJAGGCIF

2.3 Test Appeals Process

the Exclude List for that version of the Debugging Support for Other Languages TCK (effectively
removing the test(s) from the Test Suite). All tests placed on the Exclude List will have a bug report
written to document the decision and made available to all licensees through the bug reporting
database. If the test is valid but difficult to pass due to hardware or operating system limitations,
Oracle may choose to provide an alternate test to use in place of the original test (all alternate tests
are made available to the licensee community).

5. If the test challenge is rejected, the licensee may choose to escalate the decision to the Executive
Committee (EC), however, it is expected that the licensee would continue to work with Oracle to
resolve the issue and only involve the EC as a last resort.

2.3.2 Test Challenge and Response Forms

Example 2-1 shows the test challenge information you must provide to Java Licensee Engineering to
initiate a challenge, and Example 2-2 shows the test challenge response format.

Example 2-1 Test Challenge Form

Test Challenger Name and Company:

Specification Name(s) and Version(s):

Test Suite Name and Version:

Exclude List Version:

Test Name:

Complaint (argument for why test is invalid):

.jtr file of the failing test:

Console log of the JavaTest harness and device with all debugging flags turned on (if
applicable):

.jti file for the test run:

Startup scripts for the JavaTest harness and agent (if applicable):

Example 2-2 Test Challenge Response Form

Test Defender Name and Company:

Test Defender Role in Defense (e.g., test developer, Maintenance Lead, etc.):
Specification Name(s) and Version(s):

Test Suite Name and Version:

Test Name:

Defense (argument for why test is valid):

[Multiple challenges and corresponding responses may be listed here.]

Implications of test invalidity (e.g., other affected tests and test framework code,
creation or exposure of ambiguities in spec (due to unspecified requirements),
invalidation of the reference implementation, creation of serious holes in test suite):
Alternatives (e.g., are alternate test(s) appropriate?):

12 Technology Compatibility Kit User’s Guide for Jakarta EE DRAFT

#CJAFGAEE
#CJAGGCIF

2.4 Specifications for Debugging Support for Other Languages

2.4 Specifications for Debugging Support for Other
Languages

The Debugging Support for Other Languages specification is available on the JSR 045 Web site at
http://jcp.org/en/jsr/detail?id=045 or on the Java Community Process (http://jcp.org/en/home/index) site.

2.5 Reference Runtime for Debugging Support for Other
Languages 1.0

Designated Reference Runtimes for compatibility testing of Debugging Support for Other Languages 1.0
are the Sun Software JRE release 1.4 for Solaris OE/SPARC, and win32.

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 13

http://jcp.org/en/jsr/detail?id=045
http://jcp.org/en/home/index

3.1 Obtaining the Reference Implementation

3 Installation

This chapter explains how to install the Debugging Support for Other Languages TCK software. This
chapter contains the following sections:

* Obtaining the Reference Implementation

¢ Installing the Software

3.1 Obtaining the Reference Implementation

The Reference Implementation for Debugging Support for Other Languages 1.0 is Java 2 Platform,
Enterprise Edition ("J2EE") version 1.4. Follow the instructions for installing J2EE.

3.2 Installing the Software

Copy the test (dsol-tck.jar) and/or configure the class path such that the test is available on the class
path. Adding options to the ???java??? command line to accomplish this is acceptable.

Debugging Debugging Support for Other Languages TCK Contents

The top most Debugging Support for Other Languages TCK installation directory, is referred to as
TCK_DIRECTORY throughout the Debugging Support for Other Languages TCK documentation. You can
name this directory whatever you want.

Once the Debugging Support for Other Languages TCK is installed, several directories will be created
under the TCK_DIRECTORY/. The contents of these directories are as follows (on Win32 platforms
assume backslashes in directory paths, instead of forward slashes used here).

Table 3-1 Definitions??

File or Directory Contents

dsol-tck.jar Contains class files for the Debugging Support for Other Languages TCK.

doc/ This directory and its subdirectories contain all of the documentation for
the Debugging Support for Other Languages TCK.

doc/dsol-tck/ Contains the Debugging Support for Other Languages TCK User???s Guide
(dsol-tck.pdf).

src/ Contains the source files of the TCK.

14 Technology Compatibility Kit User’s Guide for Jakarta EE DRAFT

#GBFUD
#GBFTS

Debugging Support for Other Languages TCK Operating Assumptions

4 Running the TCK

This chapter describes how to use the Debugging Support for Other Languages TCK. This chapter
contains the following sections:

* Generating the SMAPs to be Tested

» Using the Debugging Support for Other Languages TCK to Test a Product

Debugging Support for Other Languages TCK Operating
Assumptions

The following is assumed:

* J2SE SDK version 1.4 or later is installed on the system hosting the test. * The Product to be tested
(which implements Debugging Support for Other Languages 1.0) is installed on the system hosting the
test.

4.1 Generating the SMAPs to be Tested

The input to the test is a set of SMAPs. The testing party must generate these SMAPs and they must be
generated according to the following procedures. There are two forms of SMAP: an unresolved SMAP
in an SMAP file and a resolved SMAP embedded in the SourceDebugExtension attribute of a class file.
If unresolved SMAPs are exposed, this SMAP form must be tested. If SMAPs are embedded into class
files, this SMAP form (class files containing a resolved SMAP) must be tested. If both forms are exposed,
the tests must be repeated with each form.

The Product must be used to create the set of SMAPs to be tested. Generally, the Product is a translator.
In this case, a set of test source programs must first be written — see “Generating the SMAPs from Test
Source” on page 16. If the Product has more than one input language or more than one output
language, the test must be repeated for each combination of input and output langauge. If the Product
has no input language, an SMAP for each type of output must be used.

4.1.1 Generating the SMAPs from Test Source
Let us call the input language of the translator LI. A set of test source programs in LI must be written.

The set of test source programs in LI must exercise all control structures in LI, all subroutine
invocation mechanisms in LI and all source inclusion mechanisms in LI.. Any of these which do not
exist in LI are, of course, excepted.

For each test source program, the Product must be used to generate the output program and its

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 15

#GHGDG
#GBFUY

4.2 Using the Debugging Support for Other Languages TCK to Test a Product

corresponding SMAP. These SMAPs will then be submitted to the TCK test.

4.2 Using the Debugging Support for Other Languages
TCK to Test a Product

The following test is applied, one SMAP at a time, to each SMAP generated by the procedures above.
The test is executed by launching the Java programming language class VerifySMAP (in dsol-tck.jar)
with the SMAP as an argument:

java VerifySMAP -classpath TCK_DIRECTORY/dsol-tck.jar path_to_the_smap

For example, to test an unresolved SMAP file pass it to the test:
java VerifySMAP my.smap For example, to test a class file with an embedded SMAP pass it to the test:
java VerifySMAP my.class

If a test fails an exception will be thrown. If the test of any SMAP fails, the TCK has failed.

16 Technology Compatibility Kit User’s Guide for Jakarta EE DRAFT

5.1 Assertions Tested with the Debugging Support for Other Languages 1.0 TCK

5 Assertions

This chapter includes the following topics:

» Assertions Tested with the Debugging Support for Other Languages 1.0 TCK

5.1 Assertions Tested with the Debugging Support for
Other Languages 1.0 TCK

© ® N o ok w o=

T N S S e Y
_ O © © N o Uk W N Rk O

22.

Syntax must be valid, per the grammar in the specification.

A resolved SMAP must specify a DefaultStratumlId.

A specified DefaultStratumId must either be "Java" or be the StratumId of a StratumSection.
No StratumSection may have a StratumId of "Java".

A FileSection may only occur after a StratumSection.

There must be exactly one FileSection after each StratumSection.

In a FileSection, each FileId must be unique within that FileSection.

In a FileSection, the FileName must be non empty.

In a FileSection, the AbsoluteFileName, if specified, must be non empty.

A LineSection may only occur after a StratumSection.

. There must be exactly one LineSection after each StratumSection.
. Ina LineSection, RepeatCount must be greater than or equal to one.

. Ina LineSection, OutputLineIncrement must be greater than or equal to zero.

In a LineSection, InputStartLine must be greater than or equal to one.

. Ina LineSection, QutputStartLine must be greater than or equal to one.

. Ina LineSection, LineFileId must be a FileId in the FileSection after the same StratumSection.
. In a VendorSection, the VENDORID must be well formed, per the specification.

. FutureSection must not be used until defined in the maintenance phase of the JSR.

. There must be at least one StratumSection.

. An embedded SMAP must not occur in a resolved SMAP.

. An OpenEmbeddedSection must be followed by at least one SMAP, and terminated with

CloseEmbeddedSection.
StratumId of CloseEmbeddedSection must match StratumId of OpenEmbeddedSection.

DRAFT Technology Compatibility Kit User’s Guide for Jakarta EE 17

#GBFUZ

	Technology Compatibility Kit User’s Guide for Jakarta EE
	Table of Contents
	Eclipse Foundation
	Preface
	Who Should Use This Book
	Before You Read This Book
	Typographic Conventions
	Shell Prompts in Command Examples

	1 Introduction
	1.1 Compatibility Testing
	1.2 About the TCK

	2 Procedure for Certification
	2.1 Certification Overview
	2.2 Compatibility Requirements
	2.3 Test Appeals Process
	2.4 Specifications for Debugging Support for Other Languages
	2.5 Reference Runtime for Debugging Support for Other Languages 1.0

	3 Installation
	3.1 Obtaining the Reference Implementation
	3.2 Installing the Software

	4 Running the TCK
	Debugging Support for Other Languages TCK Operating Assumptions
	4.1 Generating the SMAPs to be Tested
	4.2 Using the Debugging Support for Other Languages TCK to Test a Product

	5 Assertions
	5.1 Assertions Tested with the Debugging Support for Other Languages 1.0 TCK

