
Jakarta EE WebProfile
Jakarta EE Platform Team, https://projects.eclipse.org/projects/ee4j.jakartaee-

platform

11.0-RC1, July 16, 2024: DRAFT

Table of Contents
Copyright . 2

Eclipse Foundation Specification License. 3

Disclaimers . 3

1. Introduction. 5

1.1. Target and Rationale for the Web Profile . 5

1.2. Determining Applicable Requirements. 6

1.3. Acknowledgements for Version 6 . 7

1.4. Acknowledgements for Version 7 . 7

1.5. Acknowledgements for Version 8 . 8

1.6. Acknowledgements for Jakarta EE 8 and Beyond. 8

2. Component Specification Integration Requirements . 9

2.1. CDI Extended Concepts for Jakarta EE. 9

2.1.1. Functionality provided by the container to the bean in Jakarta EE . 9

2.1.2. Bean types for Jakarta EE component . 9

2.1.3. Scopes . 10

2.1.4. Default bean discovery mode for Jakarta EE . 10

2.1.5. Bean names in Jakarta EE. 10

2.2. Addition to programming model for Jakarta EE . 11

2.2.1. Managed beans in Jakarta EE . 11

2.2.2. EJB Session beans . 11

2.2.3. Producer methods on EJB session bean. 13

2.2.4. Producer field on EJB session bean . 14

2.2.5. Disposer methods on EJB session bean . 14

2.2.6. Jakarta EE components . 14

2.2.7. Resources . 15

2.2.8. Additional built-in beans. 16

2.2.9. Injected fields in Jakarta EE . 17

2.2.10. Initializer methods in Jakarta EE . 17

2.2.11. Inheritance of type-level metadata in Jakarta EE . 17

2.2.12. Inheritance of member-level metadata in Jakarta EE . 17

2.2.13. Specialization in Jakarta EE . 17

2.3. Dependency injection, lookup and EL in Jakarta EE . 17

2.3.1. Modularity in Jakarta EE. 18

2.3.2. EL name resolution . 18

2.3.3. Dependency injection in Jakarta EE . 19

2.4. Scopes and contexts in Jakarta EE . 20

2.4.1. Dependent pseudo-scope in Jakarta EE . 20

2.4.2. Passivation and passivating scopes in Jakarta EE. 21

2.4.3. Context management for built-in scopes in Jakarta EE . 21

2.5. Lifecycle of contextual instances . 25

2.5.1. Container invocations and interception in Jakarta EE . 25

2.6. Decorators in Jakarta EE. 27

2.6.1. Decorator beans in Jakarta EE . 27

2.7. Interceptor bindings in Jakarta EE. 27

2.7.1. Interceptor enablement and ordering in Jakarta EE . 27

2.7.2. Interceptor resolution in Jakarta EE . 27

2.8. Events in Jakarta EE. 27

2.8.1. Observer methods in EJB session beans . 27

2.9. Portable extensions in Jakarta EE. 28

2.9.1. The Bean interface in Jakarta EE . 28

2.9.2. InjectionTarget interface in Jakarta EE . 28

2.9.3. The BeanManager object in Jakarta EE . 28

2.9.4. Alternative metadata sources and EJB . 29

2.9.5. Addition to Container lifecycle events in Jakarta EE . 29

2.10. Packaging and deployment in Jakarta EE. 30

2.10.1. Bean archive with EJB Session Beans . 30

2.10.2. Type and Bean discovery for EJB . 31

2.11. Integration with Unified EL . 31

2.11.1. Bean name resolution in EL expressions . 31

2.11.2. Unified EL integration API . 32

2.12. CDI Specification References . 32

3. Web Profile Definition . 36

3.1. Required Components . 36

3.2. Optional Components . 36

3.3. Additional Requirements . 37

Appendix A: Revision History . 38

A.1. Changes in Final Release for EE11 . 38

A.2. Changes in Final Release for EE10 . 38

A.2.1. Editorial Changes for EE10. 38

A.3. Changes in Final Release for EE9.1 . 38

A.3.1. Editorial Changes . 38

Appendix B: Related Documents. 39

4. Jakarta EE 11 Web Profile Dependencies . 41

Specification: Jakarta EE WebProfile

Version: 11.0-RC1

Status: DRAFT

Release: July 16, 2024

1

Copyright
Copyright (c) 2018, 2022 Eclipse Foundation

2

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers
THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior

3

permission. Title to copyright in this document will at all times remain with copyright holders.

4

Chapter 1. Introduction
This specification defines the Jakarta™ EE Web Profile (“Web Profile”), a profile of the Jakarta™
Platform, Enterprise Edition specifically targeted at web applications.

1.1. Target and Rationale for the Web Profile
The Web Profile is targeted at developers of modern web applications.

With the term “modern” we intend to highlight the fact that the world of web applications has
made much progress since the introduction of the first Servlet specification. Inevitably, the number
of technologies used to create even simple web applications had grown by leaps and bounds. In
fact, few web applications today are written directly to the servlet API: most applications rely on
standard or third-party frameworks and libraries, often developed as open source, which in turn
use the services of the servlet container.

Besides managing HTTP interactions, most web applications have significant requirements in the
areas of transaction management, security and persistence. Such requirements can be readily
addressed by technologies that have been part of the Jakarta EE platform for quite some time, such
as the Jakarta Enterprise Beans 3.x technology and the Jakarta Persistence, but that are rarely
supported by “plain” servlet containers. By incorporating many of these APIs, the Web Profile aims
at raising the bar for what should be considered a basic stack for the development of web
applications using the Java platform.

Targeting “modern” web applications then implies offering a reasonably complete stack, composed
of standard APIs, and capable out-of-the-box of addressing the needs of a large class of web
applications. Furthermore, this stack should be easy to grow, so as to address any remaining
developer needs.

Against this drive towards completeness, one wishes to balance a desire to limit the footprint of
web containers, both in physical and in conceptual terms. From the point of view of developers
learning the Web Profile, it is more valuable to have a small, focused profile, with as little overlap
between technologies as possible, rather than a more powerful but overly complex one, with
redundant APIs.

In defining the Web Profile we strove to find a middle ground between these two sets of
requirements.

In terms of completeness, the Web Profile offers a complete stack, with technologies addressing
presentation and state management (Jakarta Server Faces, Jakarta Server Pages), core web
container funtionality (Jakarta Servlet), business logic (Jakarta Enterprise Beans Lite), transactions
(Jakarta Transactions), persistence (Jakarta Persistence) and more.

As for simplicity, it leaves out many of the enterprise backend APIs that are part of the Jakarta EE
platform. It also relies on the pluggability features in the Servlet specification to allow applications
to use libraries that extend the servlet container with minimal configuration overhead.

Finally, it is worth reminding that Web Profile products are allowed to ship with more technologies
than the required ones. It is conceivable that products will offer a choice at installation time

5

between different configurations, some richer in extensions, or even allow for complete
customization beyond the required core (“à la carte” installation).

1.2. Determining Applicable Requirements

Profile definitions can be quite terse, amounting to little more than a list of
required technologies and a (possibly empty) set of additional requirements,
beyond those entailed by all the referenced specifications. Being the first profile of
the Java™ EE 6 Platform to be defined, we expect the Web Profile specification to
be used as a model for future profiles. It will also be seen as a starting point for
understanding how the requirements defined in the Jakarta EE Platform
specification apply to a profile that subsets the platform itself, a significant
innovation in this version of the platform. (The case of a profile that is a superset
of the platform is much easier to picture.) To help with this process, this section
attempts to shed light on how one should go from the definition of the Web Profile
to figuring out the exact set of requirements that apply to it, and consequently to
any product that implements it.

As dictated by the general rules for Jakarta EE profiles in the Platform specification, products that
implement the Web Profile must honor:

1. all requirements of the Jakarta EE Platform specification that apply to all profiles;

2. all requirements of this specification;

3. all requirements of the individual component specifications;

4. all requirements in the Jakarta EE Platform specification that are conditional on the presence of
a specific technology or combinations of technologies.

Let’s look at some examples of requirements from each grouping.

For the first one, the Jakarta EE Platform specification mandates support for the Java™ Platform,
Standard Edition 17 API.

In the second category one can point out the requirement to support Jakarta EE web application
modules (.war files) (see Additional Requirements).

The third category is hopefully self-explanatory. For example, Web Profile products must
implement the Servlet API, which in turn means they need to satisfy all the requirements listed in
the Jakarta Servlet specification.

The fourth category is the most complex. As a first example, since a Web Profile product is required
to implement the Servlet technology, it must also follow all general requirements for Jakarta EE
web containers in the Platform specification. Additionally, it must follow all security requirements
in the Platform specification that pertain to Jakarta EE web containers, all interoperability
requirements for such containers, etc. Furthermore, since a Web Profile product must implement
the Jakarta Transactions API, it must also satisfy all the Platform specification’s transaction
management-related requirements for web components, which indeed are conditional on the
presence of Jakarta Servlet and Jakarta Transactions.

6

As a negative example for the fourth category of requirements, consider the Jakarta Messaging
technology. Since it is not a required component of the Web Profile, Web Profile products are not
required to include an implementation of Jakarta Messaging, nor do they have to support other
Jakarta Messaging-related requirements, like the ability to inject message destination references.
On the other hand, a Web Profile product that included an implementation of Jakarta Messaging
would be required to honor all the Jakarta Messaging-related requirements in the Jakarta EE
Platform specification.

Particular care should be taken when determining applicable requirements based on the presence
of Jakarta Enterprise Beans Lite in the Web Profile. As described in the Jakarta Enterprise Beans
specification, Jakarta Enterprise Beans Lite is a subset of the Jakarta Enterprise Beans API. When
examining an Jakarta Enterprise Beans-related requirement in the Jakarta EE Platform spec, one
must first of all determine which API classes, component types and Jakarta Enterprise Beans
container services are mentioned in the requirement itself. Only if all of them fall inside the Jakarta
Enterprise Beans Lite subset that requirement is considered applicable to Web Profile products.

For example, since Jakarta Enterprise Beans Lite does not include any remote functionality, the EJB
annotation may not be used to inject a remote reference, something that should be kept in mind
when evaluating the requirements in the Platform specification section “Jakarta Enterprise Beans
References”.

1.3. Acknowledgements for Version 6
Version 6 of this specification was created under the Java Community Process as JSR-316. The spec
leads for the JSR-316 Expert Group were Bill Shannon (Sun Microsystems, Inc.) and Roberto
Chinnici (Sun Microsystems, Inc.). The expert group included the following members: Florent
Benoit (Inria), Adam Bien (Individual), David Blevins (Individual), Bill Burke (Red Hat Middleware
LLC), Larry Cable (BEA Systems), Bongjae Chan (Tmax Soft, Inc.), Rejeev Divakaran (Individual),
Francois Exertier (Inria), Jeff Genender (Individual), Antonio Goncalves (Individual), Jason Greene
(Red Hat Middleware LLC), Gang Huang (Peking University), Rod Johnson (SpringSource), Werner
Keil (Individual), Michael Keith (Oracle), Wonseok Kim (Tmax Soft, Inc.), Jim Knutson (IBM), Elika S.
Kohen (Individual), Peter Kristiansson (Ericsson AB), Changshin Lee (NCsoft Corporation), Felipe
Leme (Individual), Ming Li (TongTech Ltd.), Vladimir Pavlov (SAP AG), Dhanji R. Prasanna (Google),
Reza Rahman (Individual), Rajiv Shivane (Pramati Technologies), Hani Suleiman (Individual).

1.4. Acknowledgements for Version 7
Version 7 of this specification was created under the Java Community Process as JSR-342. The
Expert Group work for this specification was conducted by means of the https://javaee.github.io/
javaee-spec/ project in order to provide transparency to the Java community. The specification leads
for the JSR-342 Expert Group were Bill Shannon (Oracle) and Linda DeMichiel (Oracle). The expert
group included the following members: Deepak Anupalli (Pramati Technologies), Anton Arhipov
(ZeroTurnaround), Florent Benoit (OW2), Adam Bien (Individual), David Blevins (Individual),
Markus Eisele (Individual), Jeff Genender (Individual), Antonio Goncalves (Individual), Jason
Greene (Red Hat, Inc.), Minehiko Iida (Fujitsu), Alex Heneveld (Individual), Jevgeni Kabanov
(Individual), Ingyu Kang (Tmax Soft, Inc.), Werner Keil (Individual), Jim Knutson (IBM), Ming Li
(TongTech Ltd.), Pete Muir (Red Hat, Inc.), Minoru Nitta (Fujitsu), Reza Rahman (Caucho Technology,

7

https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/

Inc), Kristoffer Sjogren (Ericsson AB), Kevin Sutter (IBM), Spike Washburn (Individual), Kyung Koo
Yoon (Tmax Soft).

1.5. Acknowledgements for Version 8
Version 8 of this specification was created under the Java Community Process as JSR-366. The
Expert Group work for this specification was conducted by means of the https://javaee.github.io/
javaee-spec/ project in order to provide transparency to the Java community. The specification leads
for the JSR-366 Expert Group were Bill Shannon (Oracle) and Linda DeMichiel (Oracle). The expert
group included the following members: Florent Benoit (OW2), David Blevins (Tomitribe), Jeff
Genender (Savoir Technologies), Antonio Goncalves (Individual), Jason Greene (Red Hat), Werner
Keil (Individual), Moon Namkoong (TmaxSoft, Inc.) Antoine Sabot-Durand (Red Hat), Kevin Sutter
(IBM), Ruslan Synytsky (Jelastic, Inc.), Markus Winkler (oparco - open architectures & consulting).
Reza Rahman (Individual) participated as a contributor.

1.6. Acknowledgements for Jakarta EE 8 and Beyond
Specifications Jakarta EE 8 and beyond were created by the Jakarta EE Platform Specification
Project with guidance provided by the Jakarta EE Working Group (https://jakarta.ee/).

8

https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/
https://jakarta.ee/

Chapter 2. Component Specification
Integration Requirements
This section defines the requirements between component specifications that are included in the
Platform.

This part of the document specifies additional rules or features when using CDI in a Jakarta EE
container. All content defined in [cdi-spec] applies to this part.

CDI implementations in Jakarta EE containers are required to support CDI Full.

2.1. CDI Extended Concepts for Jakarta EE
When running in Jakarta EE, the container must extend the concepts defined in [concepts] with:

• A Jakarta EE component is a bean if the lifecycle of its instances may be managed by the
container according to the lifecycle context model defined in [contexts]

• Contextual instances of a bean may be used in EL expressions that are evaluated in the same
context

• For some Jakarta EE components - like environment resources, defined in Resources - the
developer provides only the annotations and the bean implementation is provided by the
container.

2.1.1. Functionality provided by the container to the bean in Jakarta EE

When running in Jakarta EE, the container must extend the capabilities defined in [capabilities], by
providing:

• scoped resolution by bean name when used in a Unified EL expression, as defined by
[name_resolution].

2.1.2. Bean types for Jakarta EE component

As managed beans, EJB session beans may have multiple bean types depending on their client-
visible types. For instance, this session bean has only the local interfaces BookShop and Auditable,
along with Object, as bean types, since the bean class is not a client-visible type.

@Stateful
public class BookShopBean
 extends Business
 implements BookShop, Auditable {
 ...
}

The rules for determining the (unrestricted) set of bean types for Jakarta EE components are
defined in Bean types of a session bean and Bean types of a resource.

9

2.1.3. Scopes

Jakarta EE components such as servlets, EJBs and JavaBeans do not have a well-defined scope.
These components are either:

• singletons, such as EJB singleton session beans, whose state is shared between all clients,

• stateless objects, such as servlets and stateless session beans, which do not contain client-visible
state, or

• objects that must be explicitly created and destroyed by their client, such as JavaBeans and
stateful session beans, whose state is shared by explicit reference passing between clients.

CDI scopes add to Jakarta EE these missing well-defined lifecycle context as defined in [scopes].

2.1.3.1. Built-in scope types in Jakarta EE

When running in Jakarta EE, the implementations of the @RequestScoped, @ApplicationScoped and
@SessionScoped annotations provided by the container, represent the standard scopes defined by the
Java Servlets specification.

2.1.4. Default bean discovery mode for Jakarta EE

When running in Jakarta EE, If the bean discovery mode is annotated, the container must extend the
rules defined in [default_bean_discovery] with:

• bean classes of EJB sessions beans, are discovered, and

• producer methods that are on an EJB session bean are discovered, and

• producer fields that are on an EJB session bean are discovered, and

• disposer methods that are on an EJB session bean are discovered, and

• observer methods that are on an EJB session bean are discovered.

2.1.5. Bean names in Jakarta EE

A bean with a name may be referred to by its name in Unified EL expressions.

There is no relationship between the bean name of an EJB session bean and the EJB name of the
bean.

Bean names allow the direct use of beans in JSP or JSF pages. For example, a bean with the name
products could be used like this:

<h:outputText value="#{products.total}"/>

2.1.5.1. Default bean names for EJB session beans

In the circumstances listed in [default_name], the rule for determining default name for an EJB
session bean are defined in Default bean name for a session bean.

10

2.2. Addition to programming model for Jakarta EE
When running in Jakarta EE, the container must extend the rules defined in [implementation], and
must also provide built-in support for injection and contextual lifecycle management of the
following kinds of bean:

• Session beans

• Resources (Jakarta EE resources, persistence contexts, persistence units, remote EJBs and web
services)

Jakarta EE and embeddable EJB containers are required by the Jakarta EE and EJB specifications to
support EJB session beans and the Jakarta EE component environment. Other containers are not
required to provide support for injection or lifecycle management of session beans or resources.

2.2.1. Managed beans in Jakarta EE

2.2.1.1. Which Java classes are managed beans in Jakarta EE?

When running in Jakarta EE, a top-level Java class is a managed bean if it meets requirements
described in [what_classes_are_beans] or if it is defined to be a managed bean by any other Jakarta
EE specification and if

• It is not annotated with an EJB component-defining annotation or declared as an EJB bean class
in ejb-jar.xml.

2.2.2. EJB Session beans

A session bean is a bean that is implemented by a session bean with an EJB 3.x client view that is
not annotated with @Vetoed or in a package annotated @Vetoed. The basic lifecycle and semantics of
EJB session beans are defined by the EJB specification.

A stateless session bean must belong to the @Dependent pseudo-scope. A singleton session bean must
belong to either the @ApplicationScoped scope or to the @Dependent pseudo-scope. If a session bean
specifies an illegal scope, the container automatically detects the problem and treats it as a
definition error. A stateful session bean may have any scope.

When a contextual instance of a session bean is obtained via the dependency injection service, the
behavior of SessionContext.getInvokedBusinessInterface() is specific to the container
implementation. Portable applications should not rely upon the value returned by this method.

If the bean class of a session bean is annotated @Interceptor or @Decorator, the container
automatically detects the problem and treats it as a definition error.

If the session bean class is a generic type, it must have scope @Dependent. If a session bean with a
parameterized bean class declares any scope other than @Dependent, the container automatically
detects the problem and treats it as a definition error.

11

2.2.2.1. EJB remove methods of session beans

If a session bean is a stateful session bean:

• If the scope is @Dependent, the application may call any EJB remove method of a contextual
instance of the session bean.

• Otherwise, the application may not directly call any EJB remove method of any contextual
instance of the session bean.

The session bean is not required to have an EJB remove method in order for the container to
destroy it.

If the application directly calls an EJB remove method of a contextual instance of a session bean
that is a stateful session bean and declares any scope other than @Dependent, an
UnsupportedOperationException is thrown.

If the application directly calls an EJB remove method of a contextual instance of a session bean
that is a stateful session bean and has scope @Dependent then no parameters are passed to the
method by the container. Furthermore, the container ignores the instance instead of destroying it
when Contextual.destroy() is called, as defined in Lifecycle of EJB stateful session beans.

2.2.2.2. Bean types of a session bean

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and
their superinterfaces. If the session bean has a no-interface view, the unrestricted set of bean types
contains the bean class and all superclasses. In addition, java.lang.Object is a bean type of every
session bean.

Remote interfaces are not included in the set of bean types.

The resulting set of bean types for a session bean consists only of legal bean types, all other types
are removed from the set of bean types.

2.2.2.3. Declaring a session bean

A session bean does not require any special annotations apart from the component-defining
annotation (or XML declaration) required by the EJB specification. The following EJBs are beans:

@Singleton
class Shop { .. }

@Stateless
class PaymentProcessorImpl implements PaymentProcessor { ... }

A bean class may also specify a scope, bean name, stereotypes and/or qualifiers:

@ConversationScoped @Stateful @Default @Model

12

public class ShoppingCart { ... }

A session bean class may extend another bean class:

@Stateless
@Named("loginAction")
public class LoginActionImpl implements LoginAction { ... }

@Stateless
@Mock
@Named("loginAction")
public class MockLoginActionImpl extends LoginActionImpl { ... }

2.2.2.4. Specializing a session bean

If a bean class of a session bean X is annotated @Specializes, then the bean class of X must directly
extend the bean class of another session bean Y. Then X directly specializes Y, as defined in
[specialization].

If the bean class of X does not directly extend the bean class of another session bean, the container
automatically detects the problem and treats it as a definition error.

For example, MockLoginActionBean directly specializes LoginActionBean:

@Stateless
public class LoginActionBean implements LoginAction { ... }

@Stateless @Mock @Specializes
public class MockLoginActionBean extends LoginActionBean implements LoginAction { ...
}

2.2.2.5. Default bean name for a session bean

The default name for a session bean is the unqualified class name of the session bean class, after
converting the first character to lower case.

For example, if the bean class is named ProductList, the default bean name is productList.

2.2.3. Producer methods on EJB session bean

A producer method defined in an EJB session bean follows the rules defined in [producer_method]
with the following addition:

• A producer method defined in an EJB session bean must be either a business method exposed
by a local business interface of the EJB or a static method of the bean class.

13

2.2.3.1. Declaring a producer method in an EJB session bean

A producer method declaration in an EJB session bean follows the rules defined in
[declaring_producer_method] with the following addition:

• if a non-static method of a session bean class is annotated @Produces, and the method is not a
business method exposed by a local business interface of the session bean, the container
automatically detects the problem and treats it as a definition error.

2.2.4. Producer field on EJB session bean

A producer field defined in an EJB session bean follows the rules defined in [producer_field] with
the following addition:

• A producer field defined in an EJB session bean must be a static field of the bean class.

2.2.4.1. Declaring a producer field in an EJB session bean

A producer field declaration in an EJB session bean follows the rules defined in
[declaring_producer_field] with the following addition:

• If a non-static field of an EJB session bean class is annotated @Produces, the container
automatically detects the problem and treats it as a definition error.

2.2.5. Disposer methods on EJB session bean

A disposer method defined in an EJB session bean follows the rules defined in [disposer_method]
with the following addition:

• A disposer method defined in an EJB session bean must be either a business method exposed by
a local business interface of the EJB or a static method of the bean class.

2.2.5.1. Declaring a disposer method on an EJB session bean

A disposer method declaration in an EJB session bean follows the rules defined in
[declaring_disposer_method] with the following addition:

• If a non-static method of an EJB session bean class has a parameter annotated @Disposes, and
the method is not a business method exposed by a local business interface of the session bean,
the container automatically detects the problem and treats it as a definition error.

2.2.6. Jakarta EE components

Most Jakarta EE components support injection and interception, as defined in the Jakarta EE
Platform, Specification, table EE.5-1, but are not considered beans (as defined by this specification).
EJBs, as defined in EJB Session beans are the exception.

The instance used by the container to service an invocation of a Jakarta EE component will not be
the same instance obtained when using @Inject, instantiated by the container to invoke a producer
method, observer method or disposer method, or instantiated by the container to access the value

14

of a producer field. It is recommended that Jakarta EE components should not define observer
methods, producer methods, producer fields or disposer methods. It is safe to annotate Jakarta EE
components with @Vetoed to prevent them being considered beans.

2.2.7. Resources

A resource is a bean that represents a reference to a resource, persistence context, persistence unit,
remote EJB or web service in the Jakarta EE component environment.

By declaring a resource, we enable an object from the Jakarta EE component environment to be
injected by specifying only its type and qualifiers at the injection point. For example, if
@CustomerDatabase is a qualifier:

@Inject @CustomerDatabase Datasource customerData;

@Inject @CustomerDatabase EntityManager customerDatabaseEntityManager;

@Inject @CustomerDatabase EntityManagerFactory customerDatabaseEntityManagerFactory;

@Inject PaymentService remotePaymentService;

The container is not required to support resources with scope other than @Dependent. Portable
applications should not define resources with any scope other than @Dependent.

A resource may not have a bean name.

2.2.7.1. Declaring a resource

A resource may be declared by specifying a Jakarta EE component environment injection
annotation as part of a producer field declaration. The producer field may be static.

• For a Jakarta EE resource, @Resource must be specified.

• For a persistence context, @PersistenceContext must be specified.

• For a persistence unit, @PersistenceUnit must be specified.

• For a remote EJB, @EJB must be specified.

• For a web service, @WebServiceRef must be specified.

The injection annotation specifies the metadata needed to obtain the resource, entity manager,
entity manager factory, remote EJB instance or web service reference from the component
environment.

@Produces @WebServiceRef(lookup="java:app/service/PaymentService")

15

PaymentService paymentService;

@Produces @EJB(ejbLink="../their.jar#PaymentService")
PaymentService paymentService;

@Produces @Resource(lookup="java:global/env/jdbc/CustomerDatasource")
@CustomerDatabase Datasource customerDatabase;

@Produces @PersistenceContext(unitName="CustomerDatabase")
@CustomerDatabase EntityManager customerDatabasePersistenceContext;

@Produces @PersistenceUnit(unitName="CustomerDatabase")
@CustomerDatabase EntityManagerFactory customerDatabasePersistenceUnit;

The bean type and qualifiers of the resource are determined by the producer field declaration.

If the producer field declaration specifies a bean name, the container automatically detects the
problem and treats it as a definition error.

If the matching object in the Jakarta EE component environment is not of the same type as the
producer field declaration, the container automatically detects the problem and treats it as a
definition error.

2.2.7.2. Bean types of a resource

The unrestricted set of bean types for a resource is determined by the declared type of the producer
field, as specified by [producer_field_types].

The resulting set of bean types for a resource consists only of legal bean types, all other types are
removed from the set of bean types.

2.2.8. Additional built-in beans

A Jakarta EE or embeddable EJB container must provide the following built-in beans, all of which
have qualifier @Default:

• a bean with bean type jakarta.transaction.UserTransaction, allowing injection of a reference to
the JTA UserTransaction, and

A servlet container must provide the following built-in beans, all of which have qualifier @Default:

• a bean with bean type jakarta.servlet.http.HttpServletRequest, allowing injection of a
reference to the HttpServletRequest

• a bean with bean type jakarta.servlet.http.HttpSession, allowing injection of a reference to the
HttpSession,

16

• a bean with bean type jakarta.servlet.ServletContext, allowing injection of a reference to the
ServletContext,

These beans are passivation capable dependencies, as defined in
[passivation_capable_dependency].

If a Jakarta EE component class has an injection point of type UserTransaction and qualifier
@Default, and may not validly make use of the JTA UserTransaction according to the Jakarta EE
platform specification, the container automatically detects the problem and treats it as a definition
error.

2.2.9. Injected fields in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean classes in
[injected_fields] to Jakarta EE component classes supporting injection.

2.2.10. Initializer methods in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean classes in
[initializer_methods] to Jakarta EE component classes supporting injection. The container must also
ensure that:

• An initializer method defined in an EJB session bean is not required to be a business method of
the session bean.

2.2.11. Inheritance of type-level metadata in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[type_level_inheritance] to EJB session beans.

2.2.12. Inheritance of member-level metadata in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[member_level_inheritance] to EJB session beans.

2.2.13. Specialization in Jakarta EE

2.2.13.1. Direct and indirect specialization in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[member_level_inheritance] and is also required to support specialization for EJB session beans as
defined in Specializing a session bean.

2.3. Dependency injection, lookup and EL in Jakarta EE
When running in Jakarta EE, the container must extend the rules defined in
[injection_and_resolution] and may also provide references to contextual instances by Unified EL
expression evaluation.

17

When resolving a name in an EL expression, the container considers the bean name and selected
alternatives.

2.3.1. Modularity in Jakarta EE

In the Jakarta EE module architecture, any Jakarta EE module or library is a module. The Jakarta EE
module is a bean archive if it contains a beans.xml file, as defined in [bean_archive_full].

When running in Jakarta EE, the container must follow the same accessibility rules for beans and
alternatives defined in [selection] for JSP/JSF pages using EL resolution and make sure that only
beans available from injection in the module that defines the JSP/JSF pages are resolved.

In the Jakarta EE module architecture, a bean class is accessible in a module if and only if it is
required to be accessible according to the class loading requirements defined by the Jakarta EE
platform specification.

Note that, in some Jakarta EE implementations, a bean class might be accessible to some other class
even when this is not required by the Jakarta EE platform specification. For the purposes of this
specification, a class is not considered accessible to another class unless accessibility is explicitly
required by the Jakarta EE platform specification.

An alternative is not available for injection, lookup or EL resolution to classes or JSP/JSF pages in a
module unless the module is a bean archive and the alternative is explicitly selected for the bean
archive or the application.

2.3.1.1. Declaring selected alternatives for an application in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[declaring_selected_alternatives_application] to EJB session beans.

2.3.1.2. Declaring selected alternatives for a bean archive in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[declaring_selected_alternatives_bean_archive] to EJB session beans.

2.3.1.3. Unsatisfied and ambiguous dependencies in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[unsatisfied_and_ambig_dependencies] and must also validate all injection points of all Jakarta EE
component classes supporting injection

2.3.2. EL name resolution

When running in Jakarta EE, the container must extend the rules defined in [name_resolution] and
must also support name resolution for name used in Expression Language

An EL name resolves to a bean if:

• the name can be resolved to a bean according to rules in [name_resolution], and

• the bean is available for injection in the war containing the JSP or JSF page with the EL

18

expression.

2.3.2.1. Ambiguous EL names

When running in Jakarta EE, the container must extend the rules defined in [ambig_names] to
names used in Expression Language.

2.3.3. Dependency injection in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [injection] and is also
required to perform dependency injection whenever it creates the following contextual objects:

• contextual instances of EJB session beans.

The container is also required to perform dependency injection whenever it instantiates any of the
following non-contextual objects:

• non-contextual instances of EJB session beans (for example, session beans obtained by the
application from JNDI or injected using @EJB), and

• instances of any other Jakarta EE component class supporting injection.

A Java EE 5 container is not required to support injection for non-contextual objects.

2.3.3.1. Injection using the bean constructor in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[instantiation] to EJB session beans.

2.3.3.2. Injection of fields and initializer methods in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[fields_initializer_methods] to EJB session beans and to any other Jakarta EE component class
supporting injection.

The container is also required to ensure that:

• Initializer methods declared by a class X in the type hierarchy of the bean are called after all
Jakarta EE component environment resource dependencies declared by X or by superclasses of
X have been injected.

• Any @PostConstruct callback declared by a class X in the type hierarchy of the bean is called
after all Jakarta EE component environment resource dependencies declared by X or by
superclasses of X have been injected.

• Any servlet init() method is called after all initializer methods have been called, all injected
fields have been initialized and all Jakarta EE component environment resource dependencies
have been injected.

2.3.3.3. Destruction of dependent objects in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in

19

[dependent_objects_destruction] to any other Jakarta EE component class supporting injection and
perform destruction after the servlet destroy() method is called.

2.3.3.4. Bean metadata in Jakarta EE

Interceptor and decorator instances associated with Jakarta EE components that are not considered
beans (as defined by this specification) cannot obtain information about the beans they intercept
and decorate (as defined in [bean_metadata]) and thus null is injected into relevant injection
points.

2.4. Scopes and contexts in Jakarta EE

2.4.1. Dependent pseudo-scope in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [dependent_context]
and must also ensure that if a bean is declared to have @Dependent scope:

• When a Unified EL expression in a JSF or JSP page that refers to the bean by its bean name is
evaluated, at most one instance of the bean is instantiated. This instance exists to service just a
single evaluation of the EL expression. It is reused if the bean name appears multiple times in
the EL expression, but is never reused when the EL expression is evaluated again, or when
another EL expression is evaluated.

2.4.1.1. Dependent objects in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean in
[dependent_objects] to Jakarta EE component class instance.

2.4.1.2. Destruction of objects with scope @Dependent in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean in
[dependent_destruction] to Jakarta EE component class instance, and must also ensure that :

• all @Dependent scoped contextual instances created during evaluation of a Unified EL expression
in a JSP or JSF page are destroyed when the evaluation completes.

2.4.1.3. Dependent pseudo-scope and Unified EL

Suppose a Unified EL expression in a JSF or JSP page refers to a bean with scope @Dependent by its
bean name. Each time the EL expression is evaluated:

• the bean is instantiated at most once, and

• the resulting instance is reused for every appearance of the bean name, and

• the resulting instance is destroyed when the evaluation completes.

Portable extensions that integrate with the container via Unified EL should also ensure that these
rules are enforced.

20

2.4.2. Passivation and passivating scopes in Jakarta EE

2.4.2.1. Passivation capable beans in Jakarta EE

• As defined by the EJB specification, an EJB stateful session beans is passivation capable if:

◦ interceptors and decorators of the bean are passivation capable, and,

◦ the EJB stateful session bean does not have the passivationCapable flag set to false.

• As defined by the EJB specification, an EJB stateless session bean or an EJB singleton session
bean is not passivation capable.

2.4.2.2. Passivation capable dependencies in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[passivation_capable_dependency], and must also guarantee that:

• all EJB stateless session beans are passivation capable dependencies,

• all EJB singleton session beans are passivation capable dependencies,

• all passivation capable EJB stateful session beans are passivation capable dependencies, and

• all Jakarta EE resources are passivation capable dependencies.

2.4.2.3. Validation of passivation capable beans and dependencies in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[passivation_validation] to EJB session beans.

2.4.3. Context management for built-in scopes in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [builtin_contexts] and
is also required to ensure the following rules for built-in context implementation.

The built-in request and application context objects are active during servlet, web service and EJB
invocations, and the built in session and request context objects are active during servlet and web
service invocations.

2.4.3.1. Request context lifecycle in Jakarta EE

When running in Jakarta EE the container must extend the rules defined in [request_context] and is
also required to implement request context with the following rules.

The request context is active:

• during the service() method of any servlet in the web application, during the doFilter()
method of any servlet filter and when the container calls any ServletRequestListener or
AsyncListener,

• during any Jakarta EE web service invocation,

• during any remote method invocation of any EJB, during any asynchronous method invocation
of any EJB, during any call to an EJB timeout method and during message delivery to any EJB

21

message-driven bean.

The request context is destroyed:

• at the end of the servlet request, after the service() method, all doFilter() methods, and all
requestDestroyed() and onComplete() notifications return,

• after the web service invocation completes,

• after the EJB remote method invocation, asynchronous method invocation, timeout or message
delivery completes if it did not already exist when the invocation occurred.

The payload of the event fired when the request context is initialized or destroyed is:

• the ServletRequest if the context is initialized or destroyed due to a servlet request, or

• the ServletRequest if the context is initialized or destroyed due to a web service invocation, or

• any java.lang.Object for other types of request.

2.4.3.2. Session context lifecycle in Jakarta EE

When running in Jakarta EE the container is required to implement session context with the
following rules.

The session scope is active:

• during the service() method of any servlet in the web application, during the doFilter()
method of any servlet filter and when the container calls any HttpSessionListener, AsyncListener
or ServletRequestListener.

The session context is shared between all servlet requests that occur in the same HTTP session. The
session context is destroyed when the HTTPSession times out, after all HttpSessionListener s have
been called, and at the very end of any request in which invalidate() was called, after all filters and
ServletRequestListener s have been called.

An event with qualifier @Initialized(SessionScoped.class) is synchronously fired when the session
context is initialized. An event with qualifier @BeforeDestroyed(SessionScoped.class) is
synchronously fired when the session context is about to be destroyed, i.e. before the actual
destruction. An event with qualifier @Destroyed(SessionScoped.class) is synchronously fired when
the session context is destroyed, i.e. after the actual destruction. The event payload is
jakarta.servlet.http.HttpSession.

2.4.3.3. Application context lifecycle in Jakarta EE

When running in Jakarta EE the container must extend the rules defined in [application_context]
and is also required to implement application context with the following rules.

The application scope is active:

• during the service() method of any servlet in the web application, during the doFilter()
method of any servlet filter and when the container calls any ServletContextListener,
HttpSessionListener, AsyncListener or ServletRequestListener,

22

• during any Jakarta EE web service invocation,

• during any asynchronous invocation of an event observer,

• during any remote method invocation of any EJB, during any asynchronous method invocation
of any EJB, during any call to an EJB timeout method and during message delivery to any EJB
message-driven bean,

• when the disposer method or @PreDestroy callback of any bean with any normal scope other
than @ApplicationScoped is called, and

• during @PostConstruct callback of any bean.

The application context is shared between all servlet requests, web service invocations,
asynchronous invocation of an event observer, EJB remote method invocations, EJB asynchronous
method invocations, EJB timeouts and message deliveries to message-driven beans that execute
within the same application. The application context is destroyed when the application is shut
down.

The payload of the event fired when the application context is initialized or destroyed is:

• the ServletContext if the application is a web application deployed to a Servlet container, or

• any java.lang.Object for other types of application.

2.4.3.4. Conversation context lifecycle in Jakarta EE

When running in Jakarta EE the container is required to implement conversation context with the
following rules.

The conversation scope is active during all Servlet requests.

An event with qualifier @Initialized(ConversationScoped.class) is synchronously fired when the
conversation context is initialized. An event with qualifier
@BeforeDestroyed(ConversationScoped.class) is synchronously fired when the conversation is about
to be destroyed, i.e. before the actual destruction. An event with qualifier
@Destroyed(ConversationScoped.class) is synchronously fired when the conversation is destroyed,
i.e. after the actual destruction. The event payload is:

• the conversation id if the conversation context is destroyed and is not associated with a current
Servlet request, or

• the ServletRequest if the application is a web application deployed to a Servlet container, or

• any java.lang.Object for other types of application.

The conversation context provides access to state associated with a particular conversation. Every
Servlet request has an associated conversation. This association is managed automatically by the
container according to the following rules:

• Any Servlet request has exactly one associated conversation.

• The container provides a filter with the name "CDI Conversation Filter", which may be mapped
in web.xml, allowing the user alter when the conversation is associated with the servlet request.
If this filter is not mapped in any web.xml in the application, the conversation associated with a

23

Servlet request is determined at the beginning of the request before calling any service()
method of any servlet in the web application, calling the doFilter() method of any servlet filter
in the web application and before the container calls any ServletRequestListener or
AsyncListener in the web application.

• The implementation should determine the conversation associated with the Servlet request in a
way that does not prevent other filters or servlet from setting the request character encoding or
parsing the request body themselves.

Any conversation is in one of two states: transient or long-running.

• By default, a conversation is transient

• A transient conversation may be marked long-running by calling Conversation.begin()

• A long-running conversation may be marked transient by calling Conversation.end()

All long-running conversations have a string-valued unique identifier, which may be set by the
application when the conversation is marked long-running, or generated by the container.

If the conversation associated with the current Servlet request is in the transient state at the end of
a Servlet request, it is destroyed, and the conversation context is also destroyed.

If the conversation associated with the current Servlet request is in the long-running state at the
end of a Servlet request, it is not destroyed. The long-running conversation associated with a
request may be propagated to any Servlet request via use of a request parameter named cid
containing the unique identifier of the conversation. In this case, the application must manage this
request parameter.

If the current Servlet request is a JSF request, and the conversation is in long-running state, it is
propagated according to the following rules:

• The long-running conversation context associated with a request that renders a JSF view is
automatically propagated to any faces request (JSF form submission) that originates from that
rendered page.

• The long-running conversation context associated with a request that results in a JSF redirect (a
redirect resulting from a navigation rule or JSF NavigationHandler) is automatically propagated
to the resulting non-faces request, and to any other subsequent request to the same URL. This is
accomplished via use of a request parameter named cid containing the unique identifier of the
conversation.

When no conversation is propagated to a Servlet request, or if a request parameter named
conversationPropagation has the value none the request is associated with a new transient
conversation.

All long-running conversations are scoped to a particular HTTP servlet session and may not cross
session boundaries.

In the following cases, a propagated long-running conversation cannot be restored and
reassociated with the request:

• When the HTTP servlet session is invalidated, all long-running conversation contexts created

24

during the current session are destroyed, after the servlet service() method completes.

• The container is permitted to arbitrarily destroy any long-running conversation that is
associated with no current Servlet request, in order to conserve resources.

The conversation timeout, which may be specified by calling Conversation.setTimeout() is a hint to
the container that a conversation should not be destroyed if it has been active within the last given
interval in milliseconds.

If the propagated conversation cannot be restored, the container must associate the request with a
new transient conversation and throw an exception of type
jakarta.enterprise.context.NonexistentConversationException.

The container ensures that a long-running conversation may be associated with at most one
request at a time, by blocking or rejecting concurrent requests. If the container rejects a request, it
must associate the request with a new transient conversation and throw an exception of type
jakarta.enterprise.context.BusyConversationException.

2.5. Lifecycle of contextual instances

2.5.1. Container invocations and interception in Jakarta EE

When the application invokes:

• a business method of a session bean via an EJB remote or local reference,

the invocation is treated as a business method invocation.

When running in Jakarta EE, the container must extend the rules defined in [biz_method], with:

• Invocation of EJB timer service timeouts by the container are not business method invocations,
but are intercepted by interceptors for EJB timeouts.

• Only an invocation of business method on an EJB session bean is subject to EJB services such as
declarative transaction management, concurrency, security and asynchronicity, as defined by
the EJB specification.

• Additionally, invocations of message listener methods of message-driven beans during message
delivery are passed through method interceptors.

2.5.1.1. Lifecycle of EJB stateful session beans

When the create() method of a Bean object that represents an EJB stateful session bean that is
called, the container creates and returns a container-specific internal local reference to a new EJB
session bean instance. The reference must be passivation capable. This reference is not directly
exposed to the application. When the create() method of a Bean object that represents an EJB
stateful session bean that is called, the container creates and returns a container-specific internal
local reference to a new EJB session bean instance. The reference must be passivation capable. This
reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its

25

internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying EJB stateful session bean instance. This object must
be passivation capable.

When the destroy() method is called, and if the underlying EJB was not already removed by direct
invocation of a remove method by the application, the container removes the EJB stateful session
bean. The @PreDestroy callback must be invoked by the container.

Note that the container performs additional work when the underlying EJB is created and removed,
as defined in [injection]

2.5.1.2. Lifecycle of EJB stateless and singleton session beans

When the create() method of a Bean object that represents an EJB stateless session or singleton
session bean is called, the container creates and returns a container-specific internal local
reference to the EJB session bean. This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying EJB session bean. This object must be passivation
capable.

When the destroy() method is called, the container simply discards this internal reference.

Note that the container performs additional work when the underlying EJB is created and removed,
as defined in [injection]

2.5.1.3. Lifecycle of resources

When the create() method of a Bean object that represents a resource is called, the container
creates and returns a container-specific internal reference to the Jakarta EE component
environment resource, entity manager, entity manager factory, remote EJB instance or web service
reference. This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying resource, entity manager, entity manager factory,
remote EJB instance or web service reference. This object must be passivation capable.

The container must perform ordinary Jakarta EE component environment injection upon any non-
static field that functions as a resource declaration, as defined by the Jakarta EE Platform and
Jakarta Annotations specifications. The container is not required to perform Jakarta EE component
environment injection upon a static field. Portable applications should not rely upon the value of a
static field that functions as a resource declaration.

References to EJBs and web services are always dependent scoped and a new instance must be
obtained for every injection performed.

For an entity manager associated with a resource definition, it must behave as though it were
injected directly using @PersistenceContext.

26

When the destroy() method of a bean which represents a remote stateful EJB reference is called,
the container will not automatically destroy the EJB reference. The application must explicitly call
the method annotated @Remove. This behavior differs to that specified in Lifecycle of EJB stateful
session beans for beans which represent a local stateful EJB reference

2.6. Decorators in Jakarta EE
When running in Jakarta EE, the container must extend the rules defined for managed beans in
[decorators] to EJB session beans.

2.6.1. Decorator beans in Jakarta EE

Decorators of an EJB session bean must comply with the bean provider programming restrictions
defined by the EJB specification. Decorators of an EJB stateful session bean must comply with the
rules for instance passivation and conversational state defined by the EJB specification.

2.7. Interceptor bindings in Jakarta EE
EJB session and message-driven beans support interception as defined in [interceptors].

2.7.1. Interceptor enablement and ordering in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [enabled_interceptors]
and also ensured that:

• Interceptors declared using interceptor bindings are called after interceptors declared using the
@Interceptor annotation (or using the corresponding element of a deployment descriptor).

• Interceptors declared using interceptor bindings are called before any around-invoke, around-
timeout, or lifecycle event callback methods declared on the target class or any superclass of the
target class.

2.7.2. Interceptor resolution in Jakarta EE

For a custom implementation of the Interceptor interface defined in [interceptor], the container
also calls intercepts() to determine if the interceptor intercepts an EJB timeout method invocation.

2.8. Events in Jakarta EE

2.8.1. Observer methods in EJB session beans

An observer method may also be a non-abstract method of an EJB session bean class. It must be
either a business method exposed by a local business interface of the EJB or a static method of the
bean class.

2.8.1.1. Declaring an observer method in an EJB

If a non-static method of a session bean class has a parameter annotated @Observes or

27

@ObservesAsync, and the method is not a business method exposed by a local business interface of
the EJB, the container automatically detects the problem and treats it as a definition error.

2.8.1.2. Observer method invocation context in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[observer_method_invocation_context] and must also ensure that all kinds of observers are called
in the same client security context as the invocation of Event.fire() or Event.fireAsync().

The transaction and security contexts for a business method exposed by a local business interface
of an EJB session bean also depend upon the transaction attribute and @RunAs descriptor, if any.

2.9. Portable extensions in Jakarta EE

2.9.1. The Bean interface in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [bean] for managed
bean to EJB session bean.

2.9.1.1. The Interceptor interface in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [interceptor] and must
also ensure that

PRE_PASSIVATE, POST_ACTIVATE and AROUND_TIMEOUT InterceptorType values are linked to EJB lifecycle
callback or timeout method.

2.9.2. InjectionTarget interface in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for InjectionTarget in
[injectiontarget] and must also ensure that:

• when inject() is called, the container performs Jakarta EE component environment injection,
according to the semantics required by the Jakarta EE platform specification, sets the value of
all injected fields, and calls all initializer methods, as defined in Injection of fields and initializer
methods in Jakarta EE.

• @PostConstruct callback is called according to the semantics required by the Jakarta EE platform
specification.

• @PreDestroy callback is called according to the semantics required by the Jakarta EE platform
specification.

2.9.3. The BeanManager object in Jakarta EE

2.9.3.1. Obtaining a reference to the CDI container in Jakarta EE

A Jakarta EE container is required to provide a CDI provider that will allow access to the current
container for any Jakarta EE application or Jakarta EE module which contains enabled beans.

28

Jakarta EE Components may obtain an instance of BeanManager from JNDI by looking up the name
java:comp/BeanManager.

2.9.4. Alternative metadata sources and EJB

When running in Jakarta EE, the container must extend the rules defined in
[alternative_metadata_sources] and ensure that:

• when an AnnotatedType represents an EJB session bean class, Annotated.getTypeClosure() must
returns the EJB session bean types as defined in Bean types of a session bean.

2.9.5. Addition to Container lifecycle events in Jakarta EE

2.9.5.1. ProcessAnnotatedType event in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[process_annotated_type] to Jakarta EE component and EJB session bean classes.

2.9.5.2. ProcessInjectionPoint event and EJB

When running in Jakarta EE, the container must also fire an event for every injection point of every
Jakarta EE component class supporting injection that may be instantiated by the container at
runtime, including every EJB session or message-driven bean.

2.9.5.3. ProcessInjectionTarget event and EJB

When running in Jakarta EE, the container must also fire an event for every Jakarta EE component
class supporting injection that may be instantiated by the container at runtime, including every EJB
session or message-driven bean.

The container must extend the rules defined in [process_injection_target] for managed bean to EJB
session bean and other Jakarta EE component class supporting injection.

For example, this observer decorates the InjectionTarget for all servlets.

<T extends Servlet> void decorateServlet(@Observes ProcessInjectionTarget<T> pit) {
 pit.setInjectionTarget(decorate(pit.getInjectionTarget()));
}

2.9.5.4. ProcessBeanAttributes event and EJB

When running in Jakarta EE, the container must extend the rules defined in
[process_bean_attributes] to EJB session bean.

2.9.5.5. ProcessBean event and EJB

In addition to definition given in [process_bean] the following apply:

• For a session bean with bean class X, the container must raise an event of type

29

ProcessSessionBean<X>.

Resources are considered to be producer fields.

When running in Jakarta EE, the interface jakarta.enterprise.inject.spi.ProcessBean is also a
supertype of jakarta.enterprise.inject.spi.ProcessSessionBean :

public interface ProcessSessionBean<X>
 extends ProcessManagedBean<Object> {
 public String getEjbName();
 public SessionBeanType getSessionBeanType();
}

• getEjbName() returns the EJB name of the session bean.

• getSessionBeanType() returns a jakarta.enterprise.inject.spi.SessionBeanType representing the
kind of session bean.

public enum SessionBeanType { STATELESS, STATEFUL, SINGLETON }

2.10. Packaging and deployment in Jakarta EE

2.10.1. Bean archive with EJB Session Beans

When running in Jakarta EE, the container must extend the rules defined in [bean_archive_full]
with:

• An implicit bean archive may also contain EJB session beans, and

• EJB session bean should be considered as bean class with bean defining annotation when
determining if an archive is an implicit bean archive.

When determining which archives are bean archives, the container must also consider:

• EJB jars or application client jars

• The WEB-INF/classes directory of a war

The container is not required to support application client jar bean archives.

A Jakarta EE container is required by the Jakarta EE specification to support Jakarta EE modules.

In a war, the beans.xml file must be named:

• WEB-INF/beans.xml or WEB-INF/classes/META-INF/beans.xml.

If a war has a file named beans.xml in both the WEB-INF directory and in the WEB-INF/classes/META-
INF directory, then non-portable behavior results. Portable applications must have a beans.xml file
in only one of the WEB-INF or the WEB-INF/classes/META-INF directories.

30

The following additional rules apply regarding container search for beans:

• In an application deployed as an ear, the container searches every bean archive bundled with
or referenced by the ear, including bean archives bundled with or referenced by wars, EJB jars
and rars contained in the ear. The bean archives might be library jars, EJB jars or war WEB-
INF/classes directories.

• In an application deployed as a war, the container searches every bean archive bundled with or
referenced by the war. The bean archives might be library jars or the WEB-INF/classes directory.

• In an application deployed as an EJB jar, the container searches the EJB jar, if it is a bean
archive, and every bean archive referenced by the EJB jar.

• In an application deployed as a rar, the container searches every bean archive bundled with or
referenced by the rar.

• An embeddable EJB container searches each bean archive in the JVM classpath that is listed in
the value of the embeddable container initialization property jakarta.ejb.embeddable.modules,
or every bean archive in the JVM classpath if the property is not specified. The bean archives
might be directories, library jars or EJB jars.

2.10.2. Type and Bean discovery for EJB

In Jakarta EE, the container automatically discovers EJB session beans and other Jakarta EE
component class supporting injection, in bean archives like it does for managed bean as defined in
[type_bean_discovery_full].

2.10.2.1. Bean discovery in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[bean_discovery_steps_full] and must also discover each EJB session bean.

2.10.2.2. Trimmed bean archive in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[trimmed_bean_archive] and must ensure that EJB session beans are not removed from the set of
discovered types.

2.11. Integration with Unified EL

2.11.1. Bean name resolution in EL expressions

The container must provide a Unified EL ELResolver to the servlet engine and JSF implementation
that resolves bean names using the rules of name resolution defined in [name_resolution] and
resolving ambiguities according to [ambig_names].

• If a name used in an EL expression does not resolve to any bean, the ELResolver must return a
null value.

• Otherwise, if a name used in an EL expression resolves to exactly one bean, the ELResolver must
return a contextual instance of the bean, as defined in [contextual_instance].

31

2.11.2. Unified EL integration API

Since CDI version 4.1, the Unified EL integration API, which is part of the BeanManager API, is
deprecated. The relevant methods are placed in a new interface
jakarta.enterprise.inject.spi.el.ELAwareBeanManager, which is present in a new supplemental CDI
API artifact: jakarta.enterprise:jakarta.enterprise.cdi-el-api.

2.11.2.1. Obtaining ELAwareBeanManager

The BeanManager implementation in Jakarta EE must also implement ELAwareBeanManager. All rules
that apply to the BeanManager, as specified in [beanmanager] and The BeanManager object in Jakarta
EE, also apply to ELAwareBeanManager.

It follows that the container provides a built-in bean with bean type ELAwareBeanManager, scope
@Dependent and qualifier @Default, which is a passivation capable dependency as defined in
[passivation_capable_dependency]. It also follows that an ELAwareBeanManager may be obtained by
using CDI.current().getBeanManager() and casting.

The EL-related methods of ELAwareBeanManager may be called at any time during the execution of the
application.

2.11.2.2. Obtaining the ELResolver

The method ELAwareBeanManager.getELResolver() returns the jakarta.el.ELResolver specified in
Bean name resolution in EL expressions. This ELResolver is used to satisfy the rules defined in Bean
names in Jakarta EE.

public ELResolver getELResolver();

2.11.2.3. Wrapping a Unified EL ExpressionFactory

The method ELAwareBeanManager.wrapExpressionFactory() returns a wrapper
jakarta.el.ExpressionFactory that delegates MethodExpression and ValueExpression creation to the
given ExpressionFactory. When a Unified EL expression is evaluated using a MethodExpression or
ValueExpression returned by the wrapper ExpressionFactory, the rules defined in Dependent
pseudo-scope and Unified EL are enforced by the container.

public ExpressionFactory wrapExpressionFactory(ExpressionFactory expressionFactory);

2.12. CDI Specification References
References from the CDI EE Integration specification to the online CDI core specification are
provided in the following sections.

• 2.1. Concepts

• 2.1.1. Functionality provided by the container to the bean

32

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#concepts
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#capabilities

• 2.1.2.1. Legal bean types

• 2.1.4. Scopes

• 2.1.5. Default bean discovery mode

• 2.1.6.2. Default bean names

• 2.2. Programming model

• 2.2.1.1. Which Java classes are managed beans?

• 2.2.2. Producer methods

• 2.2.2.2. Declaring a producer method

• 2.2.3. Producer fields

• 2.2.3.1. Bean types of a producer field

• 2.2.3.2. Declaring a producer field

• 2.2.4. Disposer methods

• 2.2.4.2. Declaring a disposer method

• 2.2.6. Injected fields

• 2.2.7. Initializer methods

• 2.3.1. Inheritance of type-level metadata

• 2.3.2. Inheritance of member-level metadata

• 2.4. Dependency injection and lookup

• 2.4.1. Modularity

• 2.4.2.2. Unsatisfied and ambiguous dependencies

• 2.4.3. Name resolution

• 2.4.3.1. Ambiguous names

• 2.4.5. Dependency injection

• 2.4.5.1. Injection using the bean constructor

• 2.4.5.2. Injection of fields and initializer methods

• 2.4.5.3. Destruction of dependent objects

• 2.4.5.8. Bean metadata

33

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#legal_bean_types
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#scopes
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#default_bean_discovery
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#default_name
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#implementation
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#what_classes_are_beans
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#producer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#declaring_producer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#producer_field
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#producer_field_types
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#declaring_producer_field
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#disposer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#declaring_disposer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injected_fields
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#initializer_methods
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#type_level_inheritance
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#member_level_inheritance
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injection_and_resolution
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#selection
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#unsatisfied_and_ambig_dependencies
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#name_resolution
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#ambig_names
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injection
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#instantiation
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#fields_initializer_methods
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_objects_destruction
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean_metadata

• 2.5. Scopes and contexts

• 2.5.4. Dependent pseudo-scope

• 2.5.4.1. Dependent objects

• 2.5.4.2. Destruction of objects with scope @Dependent

• 2.5.5.3. Contextual instance of a bean

• 2.5.6. Context management for built-in scopes

• 2.5.6.1. Request context lifecycle

• 2.5.6.2. Application context lifecycle

• 2.6.2. Container invocations and interception

• 2.7. Interceptor bindings

• 2.8.5.3. Observer method invocation context

• 3.10.1. Bean archives in CDI Full

• 3.10.4. Type and Bean discovery in CDI Full

• 3.10.4.3. Trimmed bean archive

• 3.10.4.4. Bean discovery in CDI Full

• 3.2.3. Specialization

• 3.4.5.3. Passivation capable dependencies

• 3.4.5.5. Validation of passivation capable beans and dependencies

• 3.6.2. Interceptor enablement and ordering in CDI Full

• 3.7. Decorators

• 3.9.1. The Bean interface

• 3.9.1.2. The Interceptor interface

• 3.9.2. The Producer and InjectionTarget interfaces

• 3.9.3. The BeanManager object

• 3.9.4. Alternative metadata sources

• 3.9.5.10. ProcessBean event

• 3.9.5.6. ProcessAnnotatedType event

34

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#contexts
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_objects
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_destruction
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#contextual_instance
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#builtin_contexts
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#request_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#application_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#biz_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#interceptors
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#observer_method_invocation_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean_archive_full
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#type_bean_discovery_full
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#trimmed_bean_archive
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean_discovery_steps_full
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#specialization
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#passivation_capable_dependency
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#passivation_validation
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#enabled_interceptors
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#decorators
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#interceptor
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injectiontarget
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#beanmanager
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#alternative_metadata_sources
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_bean
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_annotated_type

• 3.9.5.8. ProcessInjectionTarget event

• 3.9.5.9. ProcessBeanAttributes event

35

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_injection_target
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_bean_attributes

Chapter 3. Web Profile Definition
This chapter defines the contents of the Jakarta™ EE 11 Web Profile.

3.1. Required Components
The following technologies are required components of the Web Profile:

• Jakarta Annotations 3.0*

• Jakarta Authentication 3.1*

• Jakarta Concurrency 3.1*

• Jakarta Contexts and Dependency Injection 4.1*

• Jakarta Data 1.0*

• Jakarta Debugging Support for Other Languages 2.0

• Jakarta Dependency Injection 2.0

• Jakarta Enterprise Beans 4.0 Lite

• Jakarta Expression Language 6.0*

• Jakarta Interceptors 2.2*

• Jakarta JSON Binding 3.0

• Jakarta JSON Processing 2.1

• Jakarta Persistence 3.2*

• Jakarta RESTful Web Services 4.0*

• Jakarta Security 4.0*

• Jakarta Server Faces 4.1*

• Jakarta Server Pages 4.0*

• Jakarta Servlet 6.1*

• Jakarta Standard Tag Library 3.0

• Jakarta Transactions 2.0

• Jakarta Validation 3.1*

• Jakarta WebSocket 2.2*

Note: technologies with an asterisk after them represent updated versions.

3.2. Optional Components
There are no optional components in the Web Profile.

Web Profile products may support some of the technologies present in the full Jakarta EE Platform
and not already listed in Required Components, consistently with their compatibility requirements.

36

3.3. Additional Requirements
Web Profile products must support the deployment of Jakarta EE web application modules (.war
files). No other modules types are required to be supported.

The following functionality is required to be supported in Web Profile products:

• Resource annotations defined by the Annotations specification (Resource, Resources)

• JNDI “java:” naming context as described in the JNDI section of the Platform specification

• Jakarta Transactions

37

Appendix A: Revision History

A.1. Changes in Final Release for EE11
• Updated Java SE base version to 17.

• Addition of Jakarta Data to Web Profile.

• Updated “Related Documents" for the updated Specifications in Jakarta EE 11.

A.2. Changes in Final Release for EE10
• Major and minor updates to most specifications.

• Addition of Jakarta Concurrency to Web Profile.

A.2.1. Editorial Changes for EE10

• Updated “Related Documents" for the updated Specifications in Jakarta EE 10.

A.3. Changes in Final Release for EE9.1

A.3.1. Editorial Changes

• Updated “Related Documents" for the updated Specifications in Jakarta EE 9.1.

38

Appendix B: Related Documents
This specification refers to the following documents. The terms used to refer to the documents in
this specification are included in parentheses.

Jakarta™ EE Core Profile Specification, Version 11.0. Available at: https://jakarta.ee/specifications/
coreprofile/11/

Jakarta™ EE Platform Specification, Version 11.0. Available at: https://jakarta.ee/specifications/
platform/11/

Java™ Platform, Standard Edition (Java SE specification), v17. Available at: https://www.jcp.org/en/jsr/
detail?id=392

Java™ Platform, Standard Edition, v17 API Specification. Available at: https://docs.oracle.com/javase/
17/docs/

Jakarta™ Enterprise Beans Specification, Version 4.0. Available at: https://jakarta.ee/specifications/
enterprise-beans/4.0/

Jakarta™ Server Pages Specification, Version 4.0. Available at: https://jakarta.ee/specifications/pages/
4.0/

Jakarta™ Expression Language Specification, Version 6.0. Available at: https://jakarta.ee/
specifications/expression-language/6.0/

Jakarta™ Servlet Specification, Version 6.1. Available at: https://jakarta.ee/specifications/servlet/6.1/

Jakarta™ Transaction Specification, Version 2.0. Available at: https://jakarta.ee/specifications/
transactions/2.0/

Jakarta™ RESTful Web Services Specification, Version 4.0. Available at: https://jakarta.ee/
specifications/restful-ws/4.0/

Jakarta™ Annotations Specification, Version 3.0. Available at: https://jakarta.ee/specifications/
annotations/3.0/

Jakarta™ Debugging Support for Other Languages Specification, Version 2.0. Available at:
https://jakarta.ee/specifications/debugging/2.0/

Jakarta™ Standard Tag Library Specification, Version 3.0. Available at: https://jakarta.ee/
specifications/tags/3.0/

Jakarta™ Server Faces Specification, Version 4.1. Available at: https://jakarta.ee/specifications/faces/
4.1/

Jakarta™ Persistence Specification, Version 3.2. Available at: https://jakarta.ee/specifications/
persistence/3.2/

Jakarta™ Validation Specification, Version 3.1. Available at: https://jakarta.ee/specifications/bean-
validation/3.1/

39

https://jakarta.ee/specifications/coreprofile/11/
https://jakarta.ee/specifications/coreprofile/11/
https://jakarta.ee/specifications/platform/11/
https://jakarta.ee/specifications/platform/11/
https://www.jcp.org/en/jsr/detail?id=392
https://www.jcp.org/en/jsr/detail?id=392
https://docs.oracle.com/javase/17/docs/
https://docs.oracle.com/javase/17/docs/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/pages/4.0/
https://jakarta.ee/specifications/pages/4.0/
https://jakarta.ee/specifications/expression-language/6.0/
https://jakarta.ee/specifications/expression-language/6.0/
https://jakarta.ee/specifications/servlet/6.1/
https://jakarta.ee/specifications/transactions/2.0/
https://jakarta.ee/specifications/transactions/2.0/
https://jakarta.ee/specifications/restful-ws/4.0/
https://jakarta.ee/specifications/restful-ws/4.0/
https://jakarta.ee/specifications/annotations/3.0/
https://jakarta.ee/specifications/annotations/3.0/
https://jakarta.ee/specifications/debugging/2.0/
https://jakarta.ee/specifications/tags/3.0/
https://jakarta.ee/specifications/tags/3.0/
https://jakarta.ee/specifications/faces/4.1/
https://jakarta.ee/specifications/faces/4.1/
https://jakarta.ee/specifications/persistence/3.2/
https://jakarta.ee/specifications/persistence/3.2/
https://jakarta.ee/specifications/bean-validation/3.1/
https://jakarta.ee/specifications/bean-validation/3.1/

Jakarta™ Interceptors Specification, Version 2.2. Available at: https://jakarta.ee/specifications/
interceptors/2.2/

Jakarta™ Contexts and Dependency Injection Specification, Version 4.1. Available at:
https://jakarta.ee/specifications/cdi/4.1/

Jakarta™ Dependency Injection Specification, Version 2.0. Available at: https://jakarta.ee/
specifications/dependency-injection/2.0/

Jakarta™ WebSocket Specification, Version 2.2. Available at: https://jakarta.ee/specifications/
websocket/2.2/

Jakarta™ JSON Processing Specification, Version 2.1. Available at: https://jakarta.ee/specifications/
jsonp/2.1/

Jakarta™ JSON Binding Specification, Version 3.0. Available at: https://jakarta.ee/specifications/jsonb/
3.0/

Jakarta™ Security Specification, Version 4.0. Available at: https://jakarta.ee/specifications/security/4.0/

Jakarta™ Authentication Specification, Version 3.1. Available at: https://jakarta.ee/specifications/
authentication/3.1/

Jakarta™ Concurrency Specification, Version 3.1. Available at: https://jakarta.ee/specifications/
concurrency/3.1/

Jakarta™ Data Specification, Version 1.0. Available at: https://jakarta.ee/specifications/data/1.0/

40

https://jakarta.ee/specifications/interceptors/2.2/
https://jakarta.ee/specifications/interceptors/2.2/
https://jakarta.ee/specifications/cdi/4.1/
https://jakarta.ee/specifications/dependency-injection/2.0/
https://jakarta.ee/specifications/dependency-injection/2.0/
https://jakarta.ee/specifications/websocket/2.2/
https://jakarta.ee/specifications/websocket/2.2/
https://jakarta.ee/specifications/jsonp/2.1/
https://jakarta.ee/specifications/jsonp/2.1/
https://jakarta.ee/specifications/jsonb/3.0/
https://jakarta.ee/specifications/jsonb/3.0/
https://jakarta.ee/specifications/security/4.0/
https://jakarta.ee/specifications/authentication/3.1/
https://jakarta.ee/specifications/authentication/3.1/
https://jakarta.ee/specifications/concurrency/3.1/
https://jakarta.ee/specifications/concurrency/3.1/
https://jakarta.ee/specifications/data/1.0/

Chapter 4. Jakarta EE 11 Web Profile
Dependencies

Failed to generate image: Could not find the 'dot' executable in PATH; add it to the
PATH or specify its location using the 'graphvizdot' document attribute
digraph EE11WebProfile {

Map a short node id to the label with version
wp [label="jakarta-web-api"];
servlet [label="servlet:6.1.0"];
jsp [label="servlet.jsp:4.0.0"];
el [label="el:6.0.0"];
jstl [label="servlet.jsp.jstl:3.0.0"];
faces [label="faces:4.1.0"];
jaxrs [label="jaxrs:4.0.0"]
websocket [label="websocket:2.2.0"];
jsonp [label="jsonp:2.1.0"];
jsonb [label="jsonb:3.0.0"];
annotations [label="annotations:3.0.0"];
ejb [label="ejb:4.0.0"];
jta [label="jta:2.0.1"];
jpa [label="jpa:3.2.0"];
validation [label="validation:3.1.0"];
interceptors [label="interceptors:2.2.0"];
cdi [label="cdi:4.1.0"];
di [label="di:2.0.1"];
authn [label="authentication:3.1.0"];
security [label="security:4.0.0"];
concurrency [label="concurrent:3.1.0"];
data [label="data:1.0.0"];

wp -> servlet;
wp -> jsp;
wp -> el;
wp -> jstl;
wp -> faces;
wp -> websocket;
wp -> jta;
wp -> jpa;
wp -> jsonb;
wp -> jsonp;
wp -> jaxrs;
wp -> annotations;
wp -> validation;
wp -> interceptors;
wp -> di;
wp -> cdi;
wp -> authn;

41

wp -> ejb;
wp -> security;
wp -> concurrency;
wp -> data;

JSP
jsp -> servlet;
jsp -> el;

JSTL
jstl -> servlet ;
jstl -> jsp ;
jstl -> el ;

Faces
faces -> servlet;
faces -> websocket;
faces -> el;
faces -> cdi;
faces -> validation;
faces -> jta;
faces -> jsp;
faces -> jstl;
faces -> jsonp;
faces -> ejb;
faces -> jpa;
faces -> annotations;

jsonb
jsonb -> jsonp;

interceptors
interceptors -> annotations;

ejb
ejb -> jta;

jta
jta -> cdi ;
jta -> interceptors ;

CDI
cdi -> el ;
cdi -> interceptors ;
cdi -> di ;
cdi -> jta [label="javadoc"];
cdi -> ejb [label="javadoc"];
}

42

	Jakarta EE WebProfile
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Introduction
	1.1. Target and Rationale for the Web Profile
	1.2. Determining Applicable Requirements
	1.3. Acknowledgements for Version 6
	1.4. Acknowledgements for Version 7
	1.5. Acknowledgements for Version 8
	1.6. Acknowledgements for Jakarta EE 8 and Beyond

	Chapter 2. Component Specification Integration Requirements
	2.1. CDI Extended Concepts for Jakarta EE
	2.1.1. Functionality provided by the container to the bean in Jakarta EE
	2.1.2. Bean types for Jakarta EE component
	2.1.3. Scopes
	2.1.4. Default bean discovery mode for Jakarta EE
	2.1.5. Bean names in Jakarta EE

	2.2. Addition to programming model for Jakarta EE
	2.2.1. Managed beans in Jakarta EE
	2.2.2. EJB Session beans
	2.2.3. Producer methods on EJB session bean
	2.2.4. Producer field on EJB session bean
	2.2.5. Disposer methods on EJB session bean
	2.2.6. Jakarta EE components
	2.2.7. Resources
	2.2.8. Additional built-in beans
	2.2.9. Injected fields in Jakarta EE
	2.2.10. Initializer methods in Jakarta EE
	2.2.11. Inheritance of type-level metadata in Jakarta EE
	2.2.12. Inheritance of member-level metadata in Jakarta EE
	2.2.13. Specialization in Jakarta EE

	2.3. Dependency injection, lookup and EL in Jakarta EE
	2.3.1. Modularity in Jakarta EE
	2.3.2. EL name resolution
	2.3.3. Dependency injection in Jakarta EE

	2.4. Scopes and contexts in Jakarta EE
	2.4.1. Dependent pseudo-scope in Jakarta EE
	2.4.2. Passivation and passivating scopes in Jakarta EE
	2.4.3. Context management for built-in scopes in Jakarta EE

	2.5. Lifecycle of contextual instances
	2.5.1. Container invocations and interception in Jakarta EE

	2.6. Decorators in Jakarta EE
	2.6.1. Decorator beans in Jakarta EE

	2.7. Interceptor bindings in Jakarta EE
	2.7.1. Interceptor enablement and ordering in Jakarta EE
	2.7.2. Interceptor resolution in Jakarta EE

	2.8. Events in Jakarta EE
	2.8.1. Observer methods in EJB session beans

	2.9. Portable extensions in Jakarta EE
	2.9.1. The Bean interface in Jakarta EE
	2.9.2. InjectionTarget interface in Jakarta EE
	2.9.3. The BeanManager object in Jakarta EE
	2.9.4. Alternative metadata sources and EJB
	2.9.5. Addition to Container lifecycle events in Jakarta EE

	2.10. Packaging and deployment in Jakarta EE
	2.10.1. Bean archive with EJB Session Beans
	2.10.2. Type and Bean discovery for EJB

	2.11. Integration with Unified EL
	2.11.1. Bean name resolution in EL expressions
	2.11.2. Unified EL integration API

	2.12. CDI Specification References

	Chapter 3. Web Profile Definition
	3.1. Required Components
	3.2. Optional Components
	3.3. Additional Requirements

	Appendix A: Revision History
	A.1. Changes in Final Release for EE11
	A.2. Changes in Final Release for EE10
	A.2.1. Editorial Changes for EE10

	A.3. Changes in Final Release for EE9.1
	A.3.1. Editorial Changes

	Appendix B: Related Documents
	Chapter 4. Jakarta EE 11 Web Profile Dependencies

