
Jakarta EE Platform
Jakarta EE Platform Team, https://projects.eclipse.org/projects/ee4j.jakartaee-

platform

11.0-RC1, July 16, 2024: DRAFT

Table of Contents
Copyright . 2

Eclipse Foundation Specification License. 3

Disclaimers . 3

1. Introduction. 5

1.1. Acknowledgements for the Initial Version of Java EE . 5

1.2. Acknowledgements for Java EE Version 1.3 . 6

1.3. Acknowledgements for Java EE Version 1.4 . 6

1.4. Acknowledgements for Java EE Version 5 . 6

1.5. Acknowledgements for Java EE Version 6 . 7

1.6. Acknowledgements for Java EE Version 7 . 7

1.7. Acknowledgements for Java EE Version 8 . 7

1.8. Acknowledgements for Jakarta EE 8 and Beyond. 8

2. Platform Overview. 9

2.1. Architecture . 9

2.2. Profiles . 10

2.3. Application Components. 11

2.3.1. Jakarta EE Server Support for Application Components. 12

2.4. Containers . 12

2.4.1. Container Requirements . 13

2.4.2. Jakarta EE Servers . 13

2.5. Resource Adapters . 13

2.6. Database . 13

2.7. Jakarta EE Standard Services. 13

2.7.1. HTTP. 14

2.7.2. HTTPS. 14

2.7.3. Jakarta Transaction API (JTA) . 14

2.7.4. JDBC™ API. 14

2.7.5. Jakarta Persistence API . 14

2.7.6. Jakarta Data API . 14

2.7.7. Jakarta™ Messaging . 15

2.7.8. Java Naming and Directory Interface™ (JNDI) . 15

2.7.9. Jakarta™ Mail. 15

2.7.10. Jakarta Activation Framework (JAF) . 15

2.7.11. XML Processing . 15

2.7.12. Jakarta Connectors . 15

2.7.13. Security Services . 16

2.7.14. XML Web Services . 16

2.7.15. Jakarta JSON Processing . 17

2.7.16. Jakarta JSON Binding . 17

2.7.17. Jakarta WebSocket . 17

2.7.18. Jakarta RESTful Web Services . 17

2.7.19. Jakarta Concurrency . 17

2.7.20. Jakarta Batch . 17

2.7.21. Jakarta Enterprise Beans . 17

2.8. Interoperability. 17

2.9. Flexibility of Product Requirements . 18

2.10. Jakarta EE Product Packaging . 19

2.11. Jakarta EE Product Extensions . 19

2.12. Platform Roles . 20

2.12.1. Jakarta EE Product Provider . 20

2.12.2. Application Component Provider . 20

2.12.3. Application Assembler . 20

2.12.4. Deployer . 21

2.12.5. System Administrator . 21

2.12.6. Tool Provider . 21

2.12.7. System Component Provider . 22

2.13. Platform Contracts . 22

2.13.1. Jakarta EE APIs . 22

2.13.2. Jakarta EE Service Provider Interfaces (SPIs) . 22

2.13.3. Network Protocols . 22

2.13.4. Deployment Descriptors and Annotations . 23

2.14. Changes in J2EE 1.3 . 23

2.15. Changes in J2EE 1.4 . 23

2.16. Changes in Java EE 5 . 24

2.17. Changes in Java EE 6 . 25

2.18. Changes in Java EE 7 . 25

2.19. Changes in Java EE 8 . 26

2.20. Changes in Jakarta EE 8 . 26

2.21. Changes in Jakarta EE 9 . 26

2.22. Changes in Jakarta EE 9.1 . 27

2.23. Changes in Jakarta EE 10 . 27

2.24. Changes in Jakarta EE 11 . 27

3. Security . 28

3.1. Introduction. 28

3.2. A Simple Example. 28

3.3. Security Architecture. 31

3.3.1. Goals. 31

3.3.2. Non Goals . 32

3.3.3. Terminology . 32

3.3.4. Container Based Security . 33

3.3.5. Distributed Security . 34

3.3.6. Authorization Model . 35

3.3.7. HTTP Login Gateways . 35

3.3.8. User Authentication . 36

3.3.9. Lazy Authentication . 38

3.4. User Authentication Requirements . 38

3.4.1. Login Sessions . 38

3.4.2. Required Login Mechanisms . 38

3.4.3. Unauthenticated Users . 40

3.4.4. Application Client User Authentication. 40

3.4.5. Resource Authentication Requirements . 41

3.5. Authorization Requirements . 42

3.5.1. Code Authorization. 42

3.5.2. Caller Authorization. 42

3.5.3. Propagated Caller Identities. 42

3.5.4. Run As Identities . 43

3.6. Deployment Requirements. 43

3.7. Future Directions . 44

3.7.1. Auditing. 44

3.7.2. Instance-based Access Control. 44

3.7.3. User Registration. 44

4. Transaction Management . 45

4.1. Overview . 45

4.2. Requirements . 46

4.2.1. Web Components . 47

4.2.2. Transactions in Web Component Life Cycles . 48

4.2.3. Transactions and Threads. 48

4.2.4. Jakarta Enterprise Beans Components . 49

4.2.5. Application Clients . 49

4.2.6. Transactional JDBC™ Technology Support . 49

4.2.7. Transactional Jakarta Messaging Support . 49

4.2.8. Transactional Resource Adapter (Connector) Support . 50

4.3. Transaction Interoperability . 50

4.3.1. Multiple Jakarta EE Platform Interoperability . 50

4.3.2. Support for Transactional Resource Managers . 50

4.4. Local Transaction Optimization . 50

4.4.1. Requirements. 51

4.4.2. A Possible Design . 51

4.5. Connection Sharing . 51

4.6. JDBC and Jakarta Messaging Deployment Issues . 52

4.7. Two-Phase Commit Support. 53

4.8. System Administration Tools . 53

5. Resources, Naming, and Injection . 54

5.1. Overview . 54

5.1.1. Chapter Organization. 54

5.1.2. Required Access to the JNDI Naming Environment . 56

5.2. JNDI Naming Context. 56

5.2.1. The Application Component’s Environment . 56

5.2.2. Application Component Environment Namespaces. 57

5.2.3. Accessibility of Environment Entry Types . 59

5.2.4. Sharing of Environment Entries . 59

5.2.5. Annotations and Injection . 59

5.2.6. Annotations and Deployment Descriptors . 62

5.2.7. Other Naming Context Entries. 63

5.3. Responsibilities by Jakarta EE Role . 64

5.3.1. Application Component Provider’s Responsibilities . 64

5.3.2. Application Assembler’s Responsibilities . 64

5.3.3. Deployer’s Responsibilities. 64

5.3.4. Jakarta EE Product Provider’s Responsibilities . 65

5.4. Simple Environment Entries . 65

5.4.1. Application Component Provider’s Responsibilities . 65

5.5. Jakarta Enterprise Beans References. 71

5.5.1. Application Component Provider’s Responsibilities . 71

5.5.2. Application Assembler’s Responsibilities . 75

5.5.3. Deployer’s Responsibilities. 77

5.5.4. Jakarta EE Product Provider’s Responsibilities . 78

5.6. Web Service References . 78

5.7. Resource Manager Connection Factory References . 78

5.7.1. Application Component Provider’s Responsibilities . 79

5.7.2. Deployer’s Responsibilities. 83

5.7.3. Jakarta EE Product Provider’s Responsibilities . 84

5.7.4. System Administrator’s Responsibilities . 85

5.8. Resource Environment References . 85

5.8.1. Application Component Provider’s Responsibilities . 85

5.8.2. Deployer’s Responsibilities. 86

5.8.3. Jakarta EE Product Provider’s Responsibilities . 87

5.9. Message Destination References. 87

5.9.1. Application Component Provider’s Responsibilities . 87

5.9.2. Application Assembler’s Responsibilities . 90

5.9.3. Deployer’s Responsibilities. 91

5.9.4. Jakarta EE Product Provider’s Responsibilities . 91

5.10. UserTransaction References . 91

5.10.1. Application Component Provider’s Responsibilities . 92

5.10.2. Jakarta EE Product Provider’s Responsibilities . 93

5.11. TransactionSynchronizationRegistry References. 93

5.11.1. Application Component Provider’s Responsibilities . 93

5.11.2. Jakarta EE Product Provider’s Responsibilities . 93

5.12. ORB References (optional) . 93

5.12.1. Application Component Provider’s Responsibilities . 94

5.12.2. Jakarta EE Product Provider’s Responsibilities . 95

5.13. Persistence Unit References. 95

5.13.1. Application Component Provider’s Responsibilities . 95

5.13.2. Application Assembler’s Responsibilities . 97

5.13.3. Deployer’s Responsibility . 98

5.13.4. Jakarta EE Product Provider’s Responsibility . 98

5.13.5. System Administrator’s Responsibility . 99

5.14. Persistence Context References . 99

5.14.1. Application Component Provider’s Responsibilities . 99

5.14.2. Application Assembler’s Responsibilities . 101

5.14.3. Deployer’s Responsibility . 102

5.14.4. Jakarta EE Product Provider’s Responsibility . 103

5.14.5. System Administrator’s Responsibility . 103

5.15. Application Name and Module Name References . 103

5.15.1. Application Component Provider’s Responsibilities . 103

5.15.2. Jakarta EE Product Provider’s Responsibilities. 103

5.16. Application Client Container Property . 103

5.16.1. Application Component Provider’s Responsibilities . 104

5.16.2. Jakarta EE Product Provider’s Responsibilities. 104

5.17. Validator and Validator Factory References . 104

5.17.1. Application Component Provider’s Responsibilities . 105

5.17.2. Jakarta EE Product Provider’s Responsibilities. 105

5.18. Resource Definition and Configuration . 105

5.18.1. Guidelines. 107

5.18.2. Requirements Common to All Resource Definition Types . 107

5.18.3. DataSource Resource Definition . 108

5.18.4. Jakarta Messaging Connection Factory Resource Definition . 110

5.18.5. Jakarta Messaging Destination Definition . 112

5.18.6. Mail Session Definition . 114

5.18.7. Connector Connection Factory Definition . 115

5.18.8. Connector Administered Object Definition . 117

5.18.9. Concurrency Resource Definitions. 118

5.19. Default Data Source . 121

5.19.1. Jakarta EE Product Provider’s Responsibilities. 121

5.20. Default Jakarta Messaging Connection Factory . 121

5.20.1. Jakarta EE Product Provider’s Responsibilities. 122

5.21. Default Jakarta Concurrency Objects . 122

5.21.1. Jakarta EE Product Provider’s Responsibilities. 123

5.22. CDI Managed Bean References . 123

5.22.1. Application Component Provider’s Responsibilities . 125

5.22.2. Jakarta EE Product Provider’s Responsibilities. 125

5.23. Bean Manager References . 125

5.23.1. Application Component Provider’s Responsibilities . 125

5.23.2. Jakarta EE Product Provider’s Responsibilities. 125

5.24. Support for Dependency Injection. 125

6. Application Programming Interface . 128

6.1. Required APIs . 128

6.1.1. Java Compatible APIs . 128

6.1.2. Required Jakarta Technologies . 129

6.1.3. Platform Prospective Specifications. 131

6.1.4. Optional Jakarta Technologies. 131

6.1.5. Removed Jakarta Technologies . 131

6.2. Java Platform, Standard Edition (Java SE) Requirements . 132

6.2.1. Programming Restrictions . 132

6.2.2. Jakarta EE Security Manager Related Requirements. 132

6.2.3. Additional Requirements . 132

6.3. Enterprise Beans 4.0 Requirements. 137

6.4. Servlet 6.1 Requirements . 137

6.5. Server Pages 4.0 Requirements. 138

6.6. Expression Language (EL) 6.0 Requirements . 138

6.7. Messaging 3.1 Requirements . 138

6.8. Transaction 2.0 Requirements . 140

6.9. Activation 2.1 Requirements . 141

6.10. Mail 2.1 Requirements . 141

6.11. Connectors 2.1 Requirements . 142

6.12. RESTful Web Services 4.0 Requirements . 142

6.13. WebSocket 2.2 (WebSocket) Requirements . 142

6.14. JSON Processing 2.1 (JSON-P) Requirements . 143

6.15. JSON Binding 3.0 (JSON-B) Requirements . 143

6.16. Concurrency 3.1 (Concurrency Utilities) Requirements . 143

6.17. Batch 2.1 Specification Requirements. 143

6.18. Authorization 3.0 Requirements . 144

6.19. Authentication 3.1 Requirements. 144

6.20. Security 4.0 Requirements . 144

6.21. Debugging Support for Other Languages Requirements 2.0 . 144

6.22. Standard Tag Library for Jakarta Server Pages 3.0 Requirements. 145

6.23. Server Faces 4.1 Requirements . 145

6.24. Annotations 3.0 Requirements . 145

6.25. Persistence 3.2 Requirements . 146

6.26. Validation 3.1 Requirements . 146

6.27. Interceptors 2.2 Requirements . 147

6.28. Contexts and Dependency Injection (CDI) 4.1 Requirements . 147

6.29. Dependency Injection for Java 2.0 Requirements . 147

7. Interoperability . 148

7.1. Introduction to Interoperability . 148

7.2. Interoperability Protocols . 148

7.2.1. Internet and Web Protocols . 149

7.2.2. OMG Protocols (optional) . 149

7.2.3. Java Technology Protocols . 149

7.2.4. Data Formats . 150

8. Application Assembly and Deployment . 151

8.1. Application Development Life Cycle . 152

8.1.1. Component Creation . 153

8.1.2. Application Assembly . 154

8.1.3. Deployment . 155

8.2. Library Support . 156

8.2.1. Bundled Libraries . 156

8.2.2. Installed Libraries . 157

8.2.3. Library Conflicts . 158

8.2.4. Library Resources. 158

8.2.5. Dynamic Class Loading . 158

8.2.6. Examples. 159

8.3. Class Loading Requirements . 160

8.3.1. Web Container Class Loading Requirements. 161

8.3.2. Jakarta Enterprise Beans Container Class Loading Requirements. 162

8.3.3. Application Client Container Class Loading Requirements . 163

8.4. Application Assembly . 164

8.4.1. Assembling a Jakarta EE Application. 164

8.4.2. Adding and Removing Modules . 166

8.5. Deployment . 166

8.5.1. Deploying a Stand-Alone Jakarta EE Module . 169

8.5.2. Deploying a Jakarta EE Application . 169

8.5.3. Deploying a Library . 171

8.5.4. Module Initialization . 172

8.6. Jakarta EE Application XML Schema. 172

8.7. Common Jakarta EE XML Schema Definitions . 174

9. Profiles . 175

9.1. Introduction. 175

9.2. Profile Definition . 175

9.3. General Rules for Profiles. 176

9.4. Expression of Requirements . 176

9.5. Requirements for All Jakarta EE Profiles . 177

9.6. Optional Features for Jakarta EE Profiles. 177

9.7. Full Jakarta™ EE Product Requirements . 177

10. Application Clients. 180

10.1. Overview . 180

10.2. Security. 180

10.3. Transactions . 181

10.4. Resources, Naming, and Injection . 181

10.5. Application Programming Interfaces . 181

10.6. Packaging and Deployment . 181

10.7. Jakarta EE Application Client XML Schema. 184

11. Service Provider Interface. 186

11.1. Jakarta™ Connectors . 186

11.2. Jakarta™ Authorization . 186

11.3. Jakarta™ Transactions . 186

11.4. Jakarta™ Persistence . 186

11.5. Jakarta™ Mail . 186

12. Compatibility and Migration. 188

12.1. Compatibility. 188

12.1.1. Backwards Compatibility for Jakarta EE 11 . 188

12.1.2. Backwards Compatibility for Jakarta EE 10 . 189

12.1.3. Backwards Compatibility for Jakarta EE 9 . 189

12.2. Migration . 190

12.2.1. Jakarta Persistence. 190

12.2.2. Jakarta XML Web Services (optional) . 191

13. Component Specification Integration Requirements . 192

13.1. CDI Extended Concepts for Jakarta EE . 192

13.1.1. Functionality provided by the container to the bean in Jakarta EE. 192

13.1.2. Bean types for Jakarta EE component . 192

13.1.3. Scopes . 193

13.1.4. Default bean discovery mode for Jakarta EE. 193

13.1.5. Bean names in Jakarta EE. 193

13.2. Addition to programming model for Jakarta EE. 194

13.2.1. Managed beans in Jakarta EE . 194

13.2.2. EJB Session beans . 194

13.2.3. Producer methods on EJB session bean . 196

13.2.4. Producer field on EJB session bean . 197

13.2.5. Disposer methods on EJB session bean . 197

13.2.6. Jakarta EE components . 197

13.2.7. Resources . 198

13.2.8. Additional built-in beans . 199

13.2.9. Injected fields in Jakarta EE . 200

13.2.10. Initializer methods in Jakarta EE . 200

13.2.11. Inheritance of type-level metadata in Jakarta EE. 200

13.2.12. Inheritance of member-level metadata in Jakarta EE. 200

13.2.13. Specialization in Jakarta EE. 200

13.3. Dependency injection, lookup and EL in Jakarta EE . 200

13.3.1. Modularity in Jakarta EE . 201

13.3.2. EL name resolution . 201

13.3.3. Dependency injection in Jakarta EE. 202

13.4. Scopes and contexts in Jakarta EE . 203

13.4.1. Dependent pseudo-scope in Jakarta EE. 203

13.4.2. Passivation and passivating scopes in Jakarta EE . 204

13.4.3. Context management for built-in scopes in Jakarta EE. 204

13.5. Lifecycle of contextual instances . 208

13.5.1. Container invocations and interception in Jakarta EE . 208

13.6. Decorators in Jakarta EE. 210

13.6.1. Decorator beans in Jakarta EE. 210

13.7. Interceptor bindings in Jakarta EE . 210

13.7.1. Interceptor enablement and ordering in Jakarta EE . 210

13.7.2. Interceptor resolution in Jakarta EE . 210

13.8. Events in Jakarta EE . 210

13.8.1. Observer methods in EJB session beans . 210

13.9. Portable extensions in Jakarta EE . 211

13.9.1. The Bean interface in Jakarta EE . 211

13.9.2. InjectionTarget interface in Jakarta EE . 211

13.9.3. The BeanManager object in Jakarta EE . 212

13.9.4. Alternative metadata sources and EJB . 212

13.9.5. Addition to Container lifecycle events in Jakarta EE . 212

13.10. Packaging and deployment in Jakarta EE . 213

13.10.1. Bean archive with EJB Session Beans . 213

13.10.2. Type and Bean discovery for EJB . 214

13.11. Integration with Unified EL. 214

13.11.1. Bean name resolution in EL expressions . 214

13.11.2. Unified EL integration API . 215

13.12. CDI Specification References. 216

14. Future Directions . 219

14.1. Jakarta EE SPI . 219

14.2. Java Platform Module System (JPMS) . 219

Appendix A: Deployment Descriptors . 220

A.1. Jakarta EE 11 schemas . 220

A.2. Jakarta EE 10 schemas . 220

A.3. Jakarta EE 9 schemas . 220

A.4. Java EE 8 / Jakarta EE 8 Schemas . 220

A.5. Java EE 7 Schemas . 220

A.5.1. Java EE 7 Application XML Schema. 221

A.5.2. Common Java EE 7 XML Schema Definitions . 223

A.5.3. Java EE 7 Application Client XML Schema . 223

A.6. Java EE 6 Schemas . 225

A.6.1. Java EE 6 Application XML Schema. 225

A.6.2. Common Java EE 6 XML Schema Definitions . 227

A.6.3. Java EE 6 Application Client XML Schema . 227

A.7. Java EE 5 Schemas . 228

A.7.1. Java EE 5 Application XML Schema. 228

A.7.2. Common Java EE 5 XML Schema Definitions . 229

A.7.3. Java EE 5 Application Client XML Schema . 229

A.8. J2EE 1.4 Schemas . 230

A.8.1. J2EE 1.4 Application XML Schema . 230

A.8.2. Common J2EE 1.4 XML Schema Definitions . 231

A.8.3. J2EE 1.4 Application Client XML Schema . 231

A.9. J2EE 1.3 DTDs . 233

A.9.1. J2EE:application 1.3 XML DTD . 233

A.9.2. J2EE:application-client 1.3 XML DTD. 233

A.10. J2EE 1.2 DTDs . 234

A.10.1. J2EE:application 1.2 XML DTD . 234

A.10.2. J2EE:application-client 1.2 XML DTD . 235

Appendix B: Java EE 8 and Jakarta EE 8 Comparison . 236

B.1. Java EE 8 and Jakarta EE 8 Specification Comparisons . 236

B.1.1. Transaction 1.2 vs 1.3 . 237

B.1.2. Deployment 1.2 vs 1.7 . 237

B.1.3. Concurrency 1.0 vs 1.1 . 238

B.2. Java EE 8 Specification References . 238

B.2.1. Activation 1.1 vs 1.2 . 238

B.2.2. SOAP with Attachments 1.3 vs 1.4 . 238

Appendix C: Revision History . 240

C.1. Changes in Final Release for EE11 . 240

C.2. Changes in Final Release for EE10 . 240

C.3. Changes in Final Release EE9.1. 240

C.3.1. Editorial Changes . 240

Appendix D: Related Documents . 241

Specification: Jakarta EE Platform

Version: 11.0-RC1

Status: DRAFT

Release: July 16, 2024

1

Copyright
Copyright (c) 2018, 2022 Eclipse Foundation

2

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers
THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior

3

permission. Title to copyright in this document will at all times remain with copyright holders.

4

Chapter 1. Introduction
Enterprises today need to extend their reach, reduce their costs, and lower the response times of
their services to customers, employees, and suppliers.

Typically, applications that provide these services must combine existing enterprise information
systems (EISs) with new business functions that deliver services to a broad range of users. The
services need to be:

• Highly available, to meet the needs of today’s global business environment.

• Secure, to protect the privacy of users and the integrity of the enterprise.

• Reliable and scalable, to ensure that business transactions are accurately and promptly
processed.

In most cases, enterprise services are implemented as multitier applications. The middle tiers
integrate existing EISs with the business functions and data of the new service. Maturing web
technologies are used to provide first tier users with easy access to business complexities, and
eliminate or drastically reduce user administration and training.

The Jakarta™ EE Platform reduces the cost and complexity of developing multitier, enterprise
services. Jakarta EE applications can be rapidly deployed and easily enhanced as the enterprise
responds to competitive pressures.

Jakarta EE achieves these benefits by defining a standard architecture with the following elements:

• Jakarta EE Platform - A standard platform for hosting Jakarta EE applications.

• Jakarta EE Compatibility Test Suite - A suite of compatibility tests for verifying that a Jakarta
EE platform product complies with the Jakarta EE platform standard.

• Jakarta Compatible Implementations - Certified implementations for building and deploying
Jakarta EE applications.

This document is the Jakarta EE platform specification. It sets out the requirements that a Jakarta
EE platform product must meet.

1.1. Acknowledgements for the Initial Version of Java
EE
This specification is the work of many people. Vlada Matena wrote the first draft as well as the
Transaction Management and Naming chapters. Sekhar Vajjhala, Kevin Osborn, and Ron Monzillo
wrote the Security chapter. Hans Hrasna wrote the Application Assembly and Deployment chapter.
Seth White wrote the JDBC API requirements. Jim Inscore, Eric Jendrock, and Beth Stearns provided
editorial assistance. Shel Finkelstein, Mark Hapner, Danny Coward, Tom Kincaid, and Tony Ng
provided feedback on many drafts. And of course this specification was formed and molded based
on conversations with and review feedback from our many industry partners.

5

1.2. Acknowledgements for Java EE Version 1.3
Version 1.3 of this specification grew out of discussions with our partners during the creation of
version 1.2, as well as meetings with those partners subsequent to the final release of version 1.2.
Version 1.3 was created under the Java Community Process as JSR-058. The JSR-058 Expert Group
included representatives from the following companies and organizations: Allaire, BEA Systems,
Bluestone Software, Borland, Bull S.A., Exoffice, Fujitsu Limited, GemStone Systems, Inc., IBM,
Inline Software, IONA Technologies, iPlanet, jGuru.com, Orion Application Server, Persistence,
POET Software, SilverStream, Sun, and Sybase. In addition, most of the people who helped with the
previous version continued to help with this version, along with Jon Ellis and Ram Jeyaraman.
Alfred Towell provided significant editorial assistance with this version.

1.3. Acknowledgements for Java EE Version 1.4
Version 1.4 of this specification was created under the Java Community Process as JSR-151. The JSR-
151 Expert Group included the following members: Larry W. Allen (SilverStream Software), Karl
Avedal (Individual), Charlton Barreto (Borland Software Corporation), Edward Cobb (BEA), Alan
Davies (SeeBeyond Technology Corporation), Sreeram Duvvuru (iPlanet), B.J. Fesq (Individual),
Mark Field (Macromedia), Mark Hapner (Sun Microsystems, Inc.), Pierce Hickey (IONA), Hemant
Khandelwal (Pramati Technologies), Jim Knutson (IBM), Elika S. Kohen (Individual), Ramesh
Loganathan (Pramati Technologies), Jasen Minton (Oracle Corporation), Jeff Mischkinsky (Oracle
Corporation), Richard Monson-Haefel (Individual), Sean Neville (Macromedia), Bill Shannon (Sun
Microsystems, Inc.), Simon Tuffs (Lutris Technologies), Jeffrey Wang (Persistence Software, Inc.),
and Ingo Zenz (SAP AG). My colleagues at Sun provided invaluable assistance: Umit Yalcinalp
converted the deployment descriptors to XML Schema; Tony Ng and Sanjeev Krishnan helped with
transaction requirements; Jonathan Bruce helped with JDBC requirements; Suzette Pelouch, Eric
Jendrock, and Ian Evans provided editorial assistance. Thanks also to all the external reviewers,
including Jeff Estefan (Adecco Technical Services).

1.4. Acknowledgements for Java EE Version 5
Version 5 (originally known as version 1.5) of this specification was created under the Java
Community Process as JSR-244. The JSR-244 Expert Group included the following members: Kilinc
Alkan (Individual), Rama Murthy Amar Pratap (Individual), Charlton Barreto (Individual), Michael
Bechauf (SAP AG), Florent Benoit (INRIA), Bill Burke (JBoss, Inc.), Muralidharan Chandrasekaran
(Individual), Yongmin Chen (Novell, Inc.), Jun Ho Cho (TmaxSoft), Ed Cobb (BEA), Ugo Corda
(SeeBeyond Technology Corporation), Scott Crawford (Individual), Arulazi Dhesiaseelan (Hewlett-
Packard Company), Bill Dudney (Individual), Francois Exertier (INRIA), Jeff Genender (The Apache
Software Foundation), Evan Ireland (Sybase, Inc.), Vishy Kasar (Borland Software Corporation),
Michael Keith (Oracle Corporation), Wonseok Kim (TmaxSoft, Inc.), Jim Knutson (IBM), Elika Kohen
(Individual), Felipe Leme (Individual), Geir Magnusson Jr. (The Apache Software Foundation), Scott
Marlow (Novell, Inc.), Jasen Minton (Oracle Corporation), Jishnu Mitra (Borland Software Corp),
David Morandi (E.piphany), Nathan Pahucki (Novell, Inc.), David Morandi (E.piphany, Inc.), Ricardo
Morin (Intel Corporation), Nathan Pahucki (Novell, Inc.), Matt Raible (Individual), Dirk Reinshagen
(Individual), Narinder Sahota (Cap Gemini), Suneet Shah (Individual), Bill Shannon (Sun
Microsystems, Inc.), Rajiv Shivane (Pramati Technologies), Scott Stark (Jboss, Inc), Hani Suleiman
(Ironflare AB), Kresten Krab Thorup (Trifork), Ashish Kumar Tiwari (Individual), Sivasundaram

6

Umapathy (Individual), Steve Weston (Cap Gemini), Seth White (BEA Systems), and Umit Yalcinalp
(SAP AG). Once again, my colleagues at Sun provided invaluable assistance: Roberto Chinnici
provided draft proposals for many issues related to dependency injection.

1.5. Acknowledgements for Java EE Version 6
Version 6 of this specification was created under the Java Community Process as JSR-316. The spec
leads for the JSR-316 Expert Group were Bill Shannon (Sun Microsystems, Inc.) and Roberto
Chinnici (Sun Microsystems, Inc.). The expert group included the following members: Florent
Benoit (Inria), Adam Bien (Individual), David Blevins (Individual), Bill Burke (Red Hat Middleware
LLC), Larry Cable (BEA Systems), Bongjae Chang (Tmax Soft, Inc.), Rejeev Divakaran (Individual),
Francois Exertier (Inria), Jeff Genender (Individual), Antonio Goncalves (Individual), Jason Greene
(Red Hat Middleware LLC), Gang Huang (Peking University), Rod Johnson (SpringSource), Werner
Keil (Individual), Michael Keith (Oracle), Wonseok Kim (Tmax Soft, Inc.), Jim Knutson (IBM), Elika S.
Kohen (Individual), Peter Kristiansson (Ericsson AB), Changshin Lee (NCsoft Corporation), Felipe
Leme (Individual), Ming Li (TongTech Ltd.), Vladimir Pavlov (SAP AG), Dhanji R. Prasanna (Google),
Reza Rahman (Individual), Rajiv Shivane (Pramati Technologies), Hani Suleiman (Individual).

1.6. Acknowledgements for Java EE Version 7
Version 7 of this specification was created under the Java Community Process as JSR-342. The
Expert Group work for this specification was conducted by means of the https://javaee.github.io/
javaee-spec/ project in order to provide transparency to the Java community. The specification leads
for the JSR-342 Expert Group were Bill Shannon (Oracle) and Linda DeMichiel (Oracle). The expert
group included the following members: Deepak Anupalli (Pramati Technologies), Anton Arhipov
(ZeroTurnaround), Florent Benoit (OW2), Adam Bien (Individual), David Blevins (Individual),
Markus Eisele (Individual), Jeff Genender (Individual), Antonio Goncalves (Individual), Jason
Greene (Red Hat, Inc.), Alex Heneveld (Individual), Minehiko Iida (Fujitsu), Jevgeni Kabanov
(Individual), Ingyu Kang (Tmax Soft, Inc.), Werner Keil (Individual), Jim Knutson (IBM), Ming Li
(TongTech Ltd.), Pete Muir (Red Hat, Inc.), Minoru Nitta (Fujitsu), Reza Rahman (Caucho Technology,
Inc), Kristoffer Sjogren (Ericsson AB), Kevin Sutter (IBM), Spike Washburn (Individual), Kyung Koo
Yoon (TmaxSoft).

1.7. Acknowledgements for Java EE Version 8
Version 8 of this specification was created under the Java Community Process as JSR-366. The
Expert Group work for this specification was conducted by means of the https://javaee.github.io/
javaee-spec/ project in order to provide transparency to the Java community. The specification leads
for the JSR-366 Expert Group were Bill Shannon (Oracle) and Linda DeMichiel (Oracle). The expert
group included the following members: Florent Benoit (OW2), David Blevins (Tomitribe), Jeff
Genender (Savoir Technologies), Antonio Goncalves (Individual), Jason Greene (Red Hat), Werner
Keil (Individual), Moon Namkoong (TmaxSoft, Inc.) Antoine Sabot-Durand (Red Hat), Kevin Sutter
(IBM), Ruslan Synytsky (Jelastic, Inc.), Markus Winkler (oparco - open architectures & consulting).
Reza Rahman (Individual) participated as a contributor.

7

https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/
https://javaee.github.io/javaee-spec/

1.8. Acknowledgements for Jakarta EE 8 and Beyond
Specifications EE 8 and beyond were created by the Jakarta EE Platform Specification Project with
guidance provided by the Jakarta EE Working Group (https://jakarta.ee/).

8

https://jakarta.ee/

Chapter 2. Platform Overview
This chapter provides an overview of the Jakarta™ EE Platform.

2.1. Architecture
The required relationships of architectural elements of the Jakarta EE platform are shown in
Jakarta EE Architecture Diagram. Note that this figure shows the logical relationships of the
elements; it is not meant to imply a physical partitioning of the elements into separate machines,
processes, address spaces, or virtual machines.

The Containers, denoted by the separate rectangles, are Jakarta EE runtime environments that
provide required services to the application components represented in the upper half of the
rectangle. The services provided are denoted by the boxes in the lower half of the rectangle. For
example, the Application Client Container provides Jakarta Messaging APIs to Application Clients,
as well as the other services represented. All these services are explained below. See Jakarta EE
Standard Services.

The arrows represent required access to other parts of the Jakarta EE platform. The Application
Client Container provides Application Clients with direct access to the Jakarta EE required Database
through the Java API for connectivity with database systems, the JDBC™ API. Similar access to
databases is provided to server pages, server faces applications, and servlets by the Web Container,
and to enterprise beans by the Enterprise Beans Container.

As indicated, the APIs of the Java™ Platform, Standard Edition (Java SE), are supported by Java SE
runtime environments for each type of application component.

9

DatabaseOptional in Jakarta EE 9

HTTP
SSL

Server Pages Servlet

Web Container

Java SE

E
nterprise B

eans
E

xpression Language
M

essaging

Transactions
A

ctivation
M

ail
C

onnectors
R

estful W
S

W
ebS

ocket
JS

O
N

-P
JS

O
N

-B
C

oncurrency

B
atch

A
uthorization

A
uthentication

S
ecurity

S
tandard Tag Library

S
erver Faces

A
nnotations

P
ersistence

B
ean V

alidation
M

anaged B
eans

Interceptors

C
D

I &
 D

I

E
nterprise W

S
X

M
L B

inding

X
M

L W
eb S

ervice
W

S
 M

etadata

S
O

A
P

 w
ith

A
ttachm

ents

Application
Client

Application Client Container

Java SE

M
essaging

A
ctivation

M
ail

JS
O

N
-P

JS
O

N
-B

A
nnotations

P
ersistence

B
ean V

alidation
M

anaged B
eans

Interceptors

C
D

I &
 D

I

E
nterprise W

S
X

M
L B

inding

X
M

L W
eb S

ervice
W

S
 M

etadata

S
O

A
P

 w
ith

A
ttachm

ents

Enterprise Beans

Enterprise Beans Container

Java SE

M
essaging

Transactions
A

ctivation
M

ail
C

onnectors
JS

O
N

-P
JS

O
N

-B
C

oncurrency

B
atch

A
uthorization

A
uthentication

S
ecurity

A
nnotations

P
ersistence

B
ean V

alidation
M

anaged B
eans

Interceptors

C
D

I &
 D

I

E
nterprise W

S
X

M
L B

inding

X
M

L W
eb S

ervice
W

S
 M

etadata

S
O

A
P

 w
ith

A
ttachm

ents

Figure 1. Jakarta EE Architecture Diagram

The following sections describe the Jakarta EE Platform requirements for each kind of Jakarta EE
platform element.

2.2. Profiles
The Java EE 6 specification introduced the notion of “profiles” (see Profiles”).

A profile is a configuration of the Jakarta EE platform targeted at a specific class of applications.

Profiles are not a new concept, nor are they unique to the Jakarta EE platform. The Jakarta EE
Specification process: “A Specification that includes by reference a collection of Specifications and
possibly additional requirements. APIs from the referenced Platform Edition must be included

10

according to the referencing rules set out in that Platform Edition Specification. Other referenced
specifications must be referenced in their entirety.”

All Jakarta EE profiles share a set of common features, such as naming and resource injection,
packaging rules, security requirements, etc. This guarantees a degree of uniformity across all
products and, indirectly, applications that fall under the “Jakarta EE platform” umbrella. This also
ensures that developers who are familiar with a certain profile, or with the full platform, can move
easily to other profiles, avoiding excessive compartmentalization of skills and experience.

Beyond the basic functionality outlined above, profiles are free to include any set of technologies
that are part of the platform, provided that all rules in the present specification that pertain to the
included technologies—either alone or in combination with others—are followed.

This last point is worth stressing. If profiles only included pointwise technologies, they would be
little more than bundles of APIs with few or no tie-ins. Instead, the definition of profiles adopted
here guarantees that whenever this specification defines requirements on combinations of
technologies, these requirements will be honored in all products based on Jakarta EE profiles.

As a concrete example, consider the use of transactions in a servlet container. In isolation, neither
the Jakarta Servlet specification nor the Jakarta Transactions specification defines a complete
programming model for portable applications. This specification fills that gap by introducing its
own set of requirements that pertain to the combination of servlets and Jakarta Transactions. These
requirements must be satisfied by any Jakarta EE profile-based product that includes those two
technologies, thus offering application developers a more complete programming model shared
across all relevant Jakarta EE profiles.

Additional profiles may be defined in accordance with the rules of the Jakarta EE Specification
Process and those contained in the present specification. In particular, profiles are initiated by
submitting a Project Proposal to the Jakarta EE Specification Process and are released at completion
on their own schedule, independently of any concurrent revision of the platform itself or of other
profiles. This ensures maximum flexibility in defining and releasing a new profile or an updated
version of an existing one.

In accordance with the definition of profiles given above, a profile may end up being either a
proper subset or a proper superset of the platform, or it may overlap with it to a certain extent. This
flexibility guarantees that future profiles will be able to cover uses well beyond those originally
envisioned by the platform specification.

As the previous paragraphs made clear, creating a new profile is a significant undertaking. The
decision to create a profile should take into account its potential drawbacks, especially in terms of
fragmentation and developer confusion. In general, a profile should be created only when there is a
natural developer constituency and a well-understood class of applications that can benefit from it.
It is also recommended that a profile cast a comprehensive net on its area of interest, to minimize
the occurrence of overlapping or competing profiles. Jakarta EE platform features such as optional
components and extensibility can be used by profiles to achieve a better fit to their intended target.

2.3. Application Components
The Jakarta EE runtime environment defines four application component types that a Jakarta EE

11

product must support:

• Application clients are Java programming language programs that are typically GUI programs
that execute on a desktop computer. Application clients offer a user experience similar to that
of native applications and have access to all of the facilities of the Jakarta EE middle tier.

• Servlets, Server Pages, Server Faces applications, Filters, and Web Event Listeners typically
execute in a web container and may respond to HTTP requests from web clients. Servlets,
server pages, server faces applications, and filters may be used to generate HTML pages that are
an application’s user interface. They may also be used to generate XML or other format data
that is consumed by other application components. A special kind of servlet may provide
support for web services using the SOAP/HTTP protocol. Servlets, pages created with the Jakarta
Server Pages technology or Jakarta Server Faces technology, web filters, and web event listeners
are referred to collectively in this specification as “web components.” Web applications are
composed of web components and other data such as HTML pages. Web components execute in
a web container. A web server includes a web container and other protocol support, security
support, and so on, as required by Jakarta EE specifications.

• Jakarta Enterprise Beans components execute in a managed environment that supports
transactions. Enterprise beans typically contain the business logic for a Jakarta EE application.
Enterprise beans may directly provide web services using the SOAP/HTTP protocol.

2.3.1. Jakarta EE Server Support for Application Components

The Jakarta EE servers provide deployment, management, and execution support for conforming
application components. Application components can be divided into three categories according to
their dependence on a Jakarta EE server:

• Components that are deployed, managed, and executed on a Jakarta EE server. These
components include web components and Jakarta Enterprise Beans components. See the
separate specifications for these components.

• Components that are deployed and managed on a Jakarta EE server, but are loaded and
executed on a client machine. These components include web resources such as HTML pages.

• Components whose deployment and management is not completely defined by this
specification. Application Clients fall into this category.

2.4. Containers
Containers provide the runtime support for Jakarta EE application components. Containers provide
a federated view of the underlying Jakarta EE APIs to the application components. Jakarta EE
application components never interact directly with other Jakarta EE application components. They
use the protocols and methods of the container for interacting with each other and with platform
services. Interposing a container between the application components and the Jakarta EE services
allows the container to transparently inject the services required by the component, such as
declarative transaction management, security checks, resource pooling, and state management.

A typical Jakarta EE product will provide a container for each application component type:
application client container, web component container, and enterprise bean container.

12

2.4.1. Container Requirements

This specification requires that containers support execution in a Java™ runtime environment, as
defined by the Java Platform, Standard Edition specification, v17 or later (Java SE 17 or later).

The container tools must understand the file formats for the packaging of application components
for deployment.

The containers are implemented by a Jakarta EE Product Provider. See the description of the
Product Provider role in Jakarta EE Product Provider.

This specification defines a set of standard services that each Jakarta EE product must support.
These standard services are described below. The Jakarta EE containers provide the APIs that
application components use to access these services. This specification also describes standard
ways to extend Jakarta EE services with connectors to other non-Jakarta EE application systems,
such as mainframe systems and ERP systems.

2.4.2. Jakarta EE Servers

Underlying a Jakarta EE container is the server of which it is a part. A Jakarta EE Product Provider
typically implements the Jakarta EE server-side functionality using an existing transaction
processing infrastructure in combination with Java Platform, Standard Edition (Java SE) technology.
The Jakarta EE client functionality is typically built on Java SE technology.

2.5. Resource Adapters
A resource adapter is a system-level software component that typically implements network
connectivity to an external resource manager. A resource adapter can extend the functionality of
the Jakarta EE platform either by implementing one of the Java SE service APIs (such as a JDBC™
driver), or by defining and implementing a resource adapter for a connector to an external
application system. Resource adapters may also provide services that are entirely local, perhaps
interacting with native resources. Resource adapters interface with the Jakarta EE platform
through the Jakarta EE service provider interfaces (Jakarta EE SPI). A resource adapter that uses the
Jakarta EE SPIs to attach to the Jakarta EE platform will be able to work with all Jakarta EE
products.

2.6. Database
The Jakarta EE platform requires a database, accessible through the JDBC API, for the storage of
business data. The database is accessible from web components, enterprise beans, and application
client components. The Jakarta EE Product Provider must also provide a preconfigured, default
data source for use by the application in accessing this database. See Default Data Source.

2.7. Jakarta EE Standard Services
The Jakarta EE standard services include the following (specified in more detail later in this
document). Some of these standard services are actually provided by Java SE.

13

2.7.1. HTTP

The HTTP client-side API is defined by the java.net package. The HTTP server-side API is defined
and used by the Jakarta RESTful Web Services, Jakarta Servlet, Jakarta Server Pages, and Jakarta
Server Faces interfaces and by the web services support that is an optional part of the Jakarta EE
platform.

2.7.2. HTTPS

Use of the HTTP protocol over the SSL protocol is supported by the same client and server APIs as
HTTP.

2.7.3. Jakarta Transaction API (JTA)

The Jakarta Transactions consists of two parts:

• An application-level demarcation interface that is used by the container and application
components to demarcate transaction boundaries.

• An interface between the transaction manager and a resource manager used at the Jakarta EE
SPI level.

2.7.4. JDBC™ API

The JDBC API is the API for connectivity with relational database systems. The JDBC API has two
parts: an application-level interface used by the application components to access a database, and a
service provider interface to attach a JDBC driver to the Jakarta EE platform. Support for the service
provider interface is not required in Jakarta EE products. Instead, JDBC drivers should be packaged
as resource adapters that use the facilities of the Connector API to interface with a Jakarta EE
product. The JDBC API is included in Java SE, but this specification includes additional
requirements on JDBC device drivers.

2.7.5. Jakarta Persistence API

Jakarta Persistence is the standard API for the management of persistence and object/relational
mapping. It provides an object/relational mapping facility for application developers using a Java
domain model to manage a relational database. Jakarta Persistence is required to be supported in
Jakarta EE. It can also be used in Java SE environments.

2.7.6. Jakarta Data API

The Jakarta Data specification provides an API for easier data access. A Java developer can split the
persistence from the model with several features, such as the ability to compose custom query
methods on a Repository interface.

Jakarta Data’s goal is to provide a familiar and consistent, Jakarta-based programming model for
data access while still retaining the particular traits of the underlying data store.

14

2.7.7. Jakarta™ Messaging

Jakarta Messaging is a standard API for messaging that supports reliable point-to-point messaging
as well as the publish-subscribe model. This specification requires a Jakarta Messaging provider
that implements both point-to-point messaging as well as publish-subscribe messaging. The Jakarta
EE Product Provider must also provide a preconfigured, default Jakarta Messaging connection
factory for use by the application in accessing this JMS provider. See Default Jakarta Messaging
Connection Factory.

2.7.8. Java Naming and Directory Interface™ (JNDI)

The JNDI API is the standard API for naming and directory access. The JNDI API has two parts: an
application-level interface used by the application components to access naming and directory
services and a service provider interface to attach a provider of a naming and directory service.
The JNDI API is included in Java SE, but this specification defines additional requirements.

2.7.9. Jakarta™ Mail

Many Internet applications require the ability to send email notifications, so the Jakarta EE
platform includes the Jakarta Mail API along with a Jakarta Mail service provider that allows an
application component to send Internet mail. The Jakarta Mail API has two parts: an application-
level interface used by the application components to send mail, and a service provider interface
used at the Jakarta EE SPI level.

2.7.10. Jakarta Activation Framework (JAF)

The JAF API provides a framework for handling data in different MIME types, originating in
different formats and locations. The Jakarta Mail API makes use of the JAF API. As of Jakarta EE 9,
the Jakarta Activation Framework is now part of the Jakarta EE Platform.

2.7.11. XML Processing

The Java™ API for XML Processing (JAXP) provides support for the industry standard SAX and DOM
APIs for parsing XML documents, as well as support for XSLT transform engines. The Streaming API
for XML (StAX) provides a pull-parsing API for XML. The JAXP and StAX APIs are included in Java
SE and so are available to Jakarta EE applications.

2.7.12. Jakarta Connectors

Jakarta Connectors is a Jakarta EE SPI that allows resource adapters that support access to
Enterprise Information Systems to be plugged in to any Jakarta EE product. The Connector
architecture defines a standard set of system-level contracts between a Jakarta EE server and a
resource adapter. The standard contracts include:

• A connection management contract that lets a Jakarta EE server pool connections to an
underlying EIS, and lets application components connect to an EIS. This leads to a scalable
application environment that can support a large number of clients requiring access to EIS
systems.

15

• A transaction management contract between the transaction manager and an EIS that supports
transactional access to EIS resource managers. This contract lets a Jakarta EE server use a
transaction manager to manage transactions across multiple resource managers. This contract
also supports transactions that are managed internal to an EIS resource manager without the
necessity of involving an external transaction manager.

• A security contract that enables secure access to an EIS. This contract provides support for a
secure application environment, which reduces security threats to the EIS and protects valuable
information resources managed by the EIS.

• A thread management contract that allows a resource adapter to delegate work to other threads
and allows the application server to manage a pool of threads. The resource adapter can control
the security context and transaction context used by the worker thread.

• A contract that allows a resource adapter to deliver messages to message driven beans
independent of the specific messaging style, messaging semantics, and messaging infrastructure
used to deliver messages. This contract also serves as the standard message provider
pluggability contract that allows a message provider to be plugged into any Jakarta EE server
via a resource adapter.

• A contract that allows a resource adapter to propagate an imported transaction context to the
Jakarta EE server such that its interactions with the server and any application components are
part of the imported transaction. This contract preserves the ACID (atomicity, consistency,
isolation, durability) properties of the imported transaction.

• An optional contract providing a generic command interface between an application program
and a resource adapter.

2.7.13. Security Services

The Java™ Authentication and Authorization Service (JAAS) enables services to authenticate and
enforce access controls upon users. It implements a Java technology version of the standard
Pluggable Authentication Module (PAM) framework and supports user-based authorization.
Jakarta™ Authorization defines a contract between a Jakarta EE application server and an
authorization service provider, allowing custom authorization service providers to be plugged into
any Jakarta EE product. Jakarta™ Authentication defines an SPI by which authentication providers
implementing message authentication mechanisms may be integrated in client or server message
processing containers or runtimes. Jakarta Security leverages Jakarta Authentication, but provides
an easier to use SPI for authentication of users of web applications and defines identity store APIs
for authentication and authorization.

2.7.14. XML Web Services

Jakarta Enterprise Web Services, Jakarta XML Web Services, XML Binding and SOAP with
Attachments have been removed from the Platform as of Jakarta EE 11. See Removed Jakarta
Technologies.

The Jakarta XML Registries support has been removed from the Platform as of Jakarta EE 9. See
Removed Jakarta Technologies.

16

2.7.15. Jakarta JSON Processing

Jakarta JSON Processing provides a convenient way to process (parse, generate, transform, and
query) JSON text.

2.7.16. Jakarta JSON Binding

Jakarta JSON Binding provides a convenient way to convert between JSON text and Java objects.

2.7.17. Jakarta WebSocket

Jakarta WebSocket is a standard API for creating WebSocket applications.

2.7.18. Jakarta RESTful Web Services

Jakarta RESTful Web Services provides support for web services using the REST style. RESTful web
services better match the design style of the web and are often easier to access using a wide variety
of programming languages. Jakarta RESTful Web Services provides a simple high-level API for
writing such web services as well as a low-level API that can be used to control the details of the
web service interaction.

2.7.19. Jakarta Concurrency

Jakarta Concurrency is a standard API for providing asynchronous capabilities to Jakarta EE
application components through the following types of objects: managed executor service,
managed scheduled executor service, managed thread factory, and context service.

2.7.20. Jakarta Batch

The Jakarta Batch API provides a programming model for batch applications and a runtime for
scheduling and executing jobs.

2.7.21. Jakarta Enterprise Beans

For the Platform specification, the following two features are removed.

• Entity Beans, both Container and Bean Managed Persistence

• Embeddable EJB Container

2.8. Interoperability
Many of the APIs described above provide interoperability with components that are not a part of
the Jakarta EE platform, such as external web or CORBA services.

Jakarta EE Interoperability illustrates the interoperability facilities that may be available in the
Jakarta EE platform. (The directions of the arrows indicate the client/server relationships of the
components.)

17

EJB
Container

Web
Container Database

Application
Client

Container

SOAP
HTTP

HTTP
SSL

IIOPJRMP

Jakarta EE Platform

HTTP
SSL

JRMP SOAP
HTTP

IIOP

JRMP
SOAP
HTTP

HTTP
SSL

EJB / IIOP / SSL

IIOP

Figure 2. Jakarta EE Interoperability

2.9. Flexibility of Product Requirements
This specification doesn’t require that a Jakarta EE product be implemented by a single program, a
single server, or even a single machine. In general, this specification doesn’t describe the
partitioning of services or functions between machines, servers, or processes. As long as the
requirements in this specification are met, Jakarta EE Product Providers can partition the
functionality however they see fit. A Jakarta EE product must be able to deploy application
components that execute with the semantics described by this specification.

A typical low end Jakarta EE product will support application clients each in their own Java virtual
machine, and will provide a single server that supports both web components and enterprise
beans. A high end Jakarta EE product might split the server components into multiple servers, each
of which can be distributed and load-balanced across a collection of machines. While such
machines might exist on-site in an enterprise, they might also reside, for example, in a public cloud.
This specification does not prescribe or preclude any of these configurations.

A wide variety of Jakarta EE product configurations and implementations, all of which meet the
requirements of this specification, are possible. A portable Jakarta EE application will function
correctly when successfully deployed in any of these products.

18

2.10. Jakarta EE Product Packaging
This specification doesn’t include requirements for the packaging of a Jakarta EE product. A Jakarta
EE product might be provided on distribution media, for download on the web, or as a service
available only on the web, for example. A Jakarta EE product must include implementations of all
the APIs required by this specification. These implementations might depend on other software or
services not included in the Jakarta EE product. The customer may be required to combine or
configure the product with other software or services that are necessary to meet the requirements
of this specification. The documentation for the Jakarta EE product must fully describe all the
required software and configuration.

For example, a Jakarta EE product might depend on a database server, a naming service, a mail
service, and/or a messaging service. All configurations in which the product is defined to operate
must include all the software and services necessary to meet the requirements of this specification.

Whether these services are available (running, accessible on the network, properly configured,
operating correctly, etc.) may be controlled independently of the Jakarta EE product — they may be
unavailable when the Jakarta EE server is started, or they may fail while the Jakarta EE server is
running. This specification does not require the Jakarta EE product to assure the availability of
these services. However, if such a service is needed to meet the requirements of this specification,
the Jakarta EE product must ensure that the service has been configured for use and will be usable
when it is available.

For example, this specification requires that applications can use a database. If the Jakarta EE
product requires a database server to be separately installed, and requires the Jakarta EE product
to be configured to use that database, such configuration must be done before applications are
deployed. This ensures that the operational environment of applications includes all the required
services.

2.11. Jakarta EE Product Extensions
This specification describes a minimum set of facilities available to all Jakarta EE products. A
Jakarta EE profile may include some or all of these facilities, as described in Profiles. Products
implementing the full Jakarta EE platform must provide all of them (see Full Jakarta EE Product
Requirements). Most Jakarta EE products will provide facilities beyond the minimum required by
this specification. This specification includes only a few limits to the ability of a product to provide
extensions. In particular, it includes the same restrictions as Java SE on extensions to Java APIs. A
Jakarta EE product must not add classes to the Java programming language packages included in
this specification, and must not add methods or otherwise alter the signatures of the specified
classes.

However, many other extensions are allowed. A Jakarta EE product may provide additional Java
APIs, either other Java optional packages or other (appropriately named) packages. A Jakarta EE
product may include support for additional protocols or services not specified here. A Jakarta EE
product may support applications written in other languages, or may support connectivity to other
platforms or applications.

Of course, portable applications will not make use of any platform extensions. Applications that do

19

make use of facilities not required by this specification will be less portable. Depending on the
facility used, the loss of portability may be minor or it may be significant.

We expect Jakarta EE products to vary widely and compete vigorously on various aspects of quality
of service. Products will provide different levels of performance, scalability, robustness, availability,
and security. In some cases this specification requires minimum levels of service. Future versions of
this specification may allow applications to describe their requirements in these areas.

2.12. Platform Roles
This section describes typical Jakarta Enterprise Edition roles. In an actual instance, an
organization may divide role functionality differently to match that organization’s application
development and deployment workflow.

The roles are described in greater detail in later sections of this specification.

2.12.1. Jakarta EE Product Provider

A Jakarta EE Product Provider is the implementor and supplier of a Jakarta EE product that
includes the component containers, Jakarta EE platform APIs, and other features defined in this
specification. A Jakarta EE Product Provider is typically an application server vendor, a web server
vendor, a database system vendor, or an operating system vendor. A Jakarta EE Product Provider
must make available the Jakarta EE APIs to the application components through containers. A
Product Provider frequently bases their implementation on an existing infrastructure.

A Jakarta EE Product Provider must provide the mapping of the application components to the
network protocols as specified by this specification. A Jakarta EE product is free to implement
interfaces that are not specified by this specification in an implementation-specific way.

A Jakarta EE Product Provider must provide application deployment and management tools.
Deployment tools enable a Deployer (see Deployer) to deploy application components on the
Jakarta EE product. Management tools allow a System Administrator (see System Administrator) to
manage the Jakarta EE product and the applications deployed on the Jakarta EE product. The form
of these tools is not prescribed by this specification.

2.12.2. Application Component Provider

There are multiple roles for Application Component Providers, including, for example, HTML
document designers, document programmers, and enterprise bean developers. These roles use
tools to produce Jakarta EE applications and components.

2.12.3. Application Assembler

The Application Assembler takes a set of components developed by Application Component
Providers and assembles them into a complete Jakarta EE application delivered in the form of an
Enterprise Archive (.ear) file. The Application Assembler will generally use GUI tools provided by
either a Platform Provider or Tool Provider. The Application Assembler is responsible for providing
assembly instructions describing external dependencies of the application that the Deployer must
resolve in the deployment process.

20

2.12.4. Deployer

The Deployer is responsible for deploying application clients, web applications, and Enterprise
Beans components into a specific operational environment. The Deployer uses tools supplied by the
Jakarta EE Product Provider to carry out deployment tasks. Deployment is typically a three-stage
process:

1. During Installation the Deployer moves application media to the server, generates the
additional container-specific classes and interfaces that enable the container to manage the
application components at runtime, and installs application components, and additional classes
and interfaces, into the appropriate Jakarta EE containers.

2. During Configuration, external dependencies declared by the Application Component Provider
are resolved and application assembly instructions defined by the Application Assembler are
followed. For example, the Deployer is responsible for mapping security roles defined by the
Application Assembler onto user groups and accounts that exist in the target operational
environment.

3. Finally, the Deployer starts up Execution of the newly installed and configured application.

In some cases, a specially qualified Deployer may customize the business logic of the application’s
components at deployment time. For example, using tools provided with a Jakarta EE product, the
Deployer may provide simple application code that wraps an enterprise bean’s business methods,
or customizes the appearance of a Jakarta Server Pages or Jakarta Server Faces page.

The Deployer’s output is web applications, enterprise beans, and application clients that have been
customized for the target operational environment and are deployed in a specific Jakarta EE
container.

For example, in the case of cloud deployments, the Deployer would be responsible for configuring
the application to run in the cloud environment. The Deployer would install the application into the
cloud environment, configure its external dependencies, and might handle aspects of provisioning
its required resources.

2.12.5. System Administrator

The System Administrator is responsible for the configuration and administration of the
enterprise’s computing and networking infrastructure. The System Administrator is also
responsible for overseeing the runtime well-being of the deployed Jakarta EE applications. The
System Administrator typically uses runtime monitoring and management tools provided by the
Jakarta EE Product Provider to accomplish these tasks.

For example, in a cloud scenario, the System Administrator would be responsible for installing,
configuring, managing, and maintaining the cloud environment, including the resources that are
made available to applications running in the environment.

2.12.6. Tool Provider

A Tool Provider provides tools used for the development and packaging of application components.
A variety of tools are anticipated, corresponding to the types of application components supported

21

by the Jakarta EE platform. Platform independent tools can be used for all phases of development
through the deployment of an application and the management and monitoring of an application
server.

2.12.7. System Component Provider

A variety of system level components may be provided by System Component Providers. Jakarta
Connectors defines the primary APIs used to provide resource adapters of many types. These
resource adapters may connect to existing enterprise information systems of many types, including
databases and messaging systems. Another type of system component is an authorization policy
provider as defined by the Jakarta Authorization specification.

2.13. Platform Contracts
This section describes the Jakarta EE contracts that must be fulfilled by a Jakarta EE Product
Provider implementing the full Jakarta EE platform. Jakarta EE profiles may include some or all of
these facilities, as described in Profiles.

2.13.1. Jakarta EE APIs

The Jakarta EE APIs define the contract between the Jakarta EE application components and the
Jakarta EE platform. The contract specifies both the runtime and deployment interfaces.

The Jakarta EE Product Provider must implement the Jakarta EE APIs in a way that supports the
semantics and policies described in this specification. The Application Component Provider
provides components that conform to these APIs and policies.

2.13.2. Jakarta EE Service Provider Interfaces (SPIs)

The Jakarta EE Service Provider Interfaces (SPIs) define the contract between the Jakarta EE
platform and service providers that may be plugged into a Jakarta EE product. The connector APIs
define service provider interfaces for integrating resource adapters with a Jakarta EE application
server. Resource adapter components implementing the connector APIs are called Connectors. The
Jakarta Authorization APIs define service provider interfaces for integrating security authorization
mechanisms with a Jakarta EE application server.

The Jakarta EE Product Provider must implement the Jakarta EE SPIs in a way that supports the
semantics and policies described in this specification. A provider of Service Provider components
(for example, a Connector Provider) should provide components that conform to these SPIs and
policies.

2.13.3. Network Protocols

This specification defines the mapping of application components to industry-standard network
protocols. The mapping allows client access to the application components from systems that have
not installed Jakarta EE product technology. See Interoperability, for details on the network
protocol support required for interoperability.

The Jakarta EE Product Provider is required to publish the installed application components on the

22

industry-standard protocols. This specification defines the mapping of servlets and server pages to
the HTTP and HTTPS protocols, and the mapping of Jakarta Enterprise Beans components to IIOP
and SOAP protocols.

2.13.4. Deployment Descriptors and Annotations

Deployment descriptors and Java language annotations are used to communicate the needs of
application components to the Deployer. The deployment descriptor and class file annotations are a
contract between the Application Component Provider or Assembler and the Deployer. The
Application Component Provider or Assembler is required to specify the application component’s
external resource requirements, security requirements, environment parameters, and so forth in
the component’s deployment descriptor or through class file annotations. The Jakarta EE Product
Provider is required to provide a deployment tool that interprets the Jakarta EE deployment
descriptors and class file annotations and allows the Deployer to map the application component’s
requirements to the capabilities of a specific Jakarta EE product and environment.

2.14. Changes in J2EE 1.3
The J2EE 1.3 specification extends the J2EE platform with additional enterprise integration
facilities. The Connector API supports integration with external enterprise information systems. A
JMS provider is now required. The JAXP API provides support for processing XML documents. The
JAAS API provides security support for the Connector API. The EJB specification now requires
support for interoperability using the IIOP protocol.

Significant changes have been made to the EJB specification. The EJB specification has a new
container-managed persistence model, support for message driven beans, and support for local
enterprise beans.

Other existing J2EE APIs have been updated as well. See the individual API specifications for
details. Finally, J2EE 1.3 requires support for J2SE 1.3.

2.15. Changes in J2EE 1.4
The primary focus of J2EE 1.4 is support for web services. The JAX-RPC and SAAJ APIs provide the
basic web services interoperability support. The Web Services for J2EE specification describes the
packaging and deployment requirements for J2EE applications that provide and use web services.
The EJB specification was also extended to support implementing web services using stateless
session beans. The JAXR API supports access to registries and repositories.

Several other APIs have been added to J2EE 1.4. The J2EE Management and J2EE Deployment APIs
enable enhanced tool support for J2EE products. The JMX API supports the J2EE Management API.
The J2EE Authorization Contract for Containers provides an SPI for security providers.

Many of the existing J2EE APIs have been enhanced in J2EE 1.4. J2EE 1.4 builds on J2SE 1.4. The JSP
specification has been enhanced to simplify the development of web applications. The Connector
API now supports integration with asynchronous messaging systems, including the ability to plug in
JMS providers.

23

Changes in this J2EE platform specification include support for deploying class libraries
independently of any application and the conversion of deployment descriptor DTDs to XML
Schemas.

Other J2EE APIs have been enhanced as well. For additional details, see each of the referenced
specifications.

2.16. Changes in Java EE 5
With this release, the platform has a new name – Java Platform, Enterprise Edition, or Java EE for
short. This new name gets rid of the confusing “2” while emphasizing even in the short name that
this is a Java platform. Previous versions are still referred to using the old name “J2EE”.

The focus of Java EE 5 is ease of development. To simplify the development process for
programmers just starting with Java EE, or developing small to medium applications, Java EE 5
makes extensive use of Java language annotations, which were introduced by J2SE 5.0. Annotations
reduce or eliminate the need to deal with Java EE deployment descriptors in many cases. Even large
applications can benefit from the simplifications provided by annotations.

One of the major uses of annotations is to specify injection of resources and other dependencies
into Java EE components. Injection augments the existing JNDI lookup capability to provide a new
simplified model for applications to gain access to the resources needed from the operational
environment. Injection also works with deployment descriptors to allow the deployer to customize
or override resource settings specified in the application’s source code.

The use of annotations is made even more effective by providing better defaults. Better default
behavior and better default configuration allows most applications to get the behavior they want
most of the time, without the use of either annotations or deployment descriptors in many cases.
When the default is not what the application wants, a simple annotation can be used to specify the
required behavior or configuration.

The combination of annotations and better defaults has greatly simplified the development of
applications using Enterprise JavaBeans technology and applications defining or using web
services. Enterprise beans are now dramatically simpler to develop. Web services are much easier
to develop using the annotations defined by the Web Services Metadata specification.

The area of web services continues to evolve at a rapid pace. To provide the latest web services
support, the JAX-RPC technology has evolved into the JAX-WS technology, which makes heavy use of
the JAXB technology to bind Java objects to XML data. Both JAX-WS and JAXB are new to this
version of the platform.

Major additions to Java EE 5 include the JSTL and JSF technologies that simplify development of
web applications, and the Java Persistence API developed by the EJB 3.0 expert group, which greatly
simplifies mapping Java objects to databases.

Minor additions include the StAX API for XML parsing. Most APIs from previous versions have been
updated with small to medium improvements.

24

2.17. Changes in Java EE 6
Java EE 6 continues the “ease of development” focus of Java EE 5.

One of the major improvements introduced in Java EE 6 is the Contexts and Dependency Injection
(CDI) technology, which provides a uniform framework for the dependency injection and lifecycle
management of “managed beans”.

The Java EE 6 Managed Bean specification defines the commonalities across the spectrum of Java
EE managed objects, extending from basic managed beans through EJB components.

The Bean Validation specification, introduced in this release, provides a facility for validation of
managed objects. Bean Validation is integrated into the Java Persistence API, where it provides an
automated facility for the validation of JPA entities.

Java EE 6 adds the JAX-RS API as a required technology of the Java EE Platform. JAX-RS is the API
for the development of Web services built according to the Representational State Transfer (REST)
architectural style.

Java EE 6 also introduces the Java EE Web Profile, the first new profile of the Java EE Platform.

2.18. Changes in Java EE 7
Since its inception, the Java EE platform has been targeted at offloading the developer from
common infrastructure tasks through its container-based model and abstraction of resource access.
In recent releases the platform has considerably simplified the APIs for access to container services
while broadening the range of the services available. In this release we continue the direction of
improved simplification, while extending the range of the Java EE platform to encompass emerging
technologies in the web space.

The Java EE 7 platform adds first-class support for recent developments in web standards,
including Web Sockets and JSON, which provide the underpinnings for HTML 5 support in Java EE.
Java EE 7 also adds a modern HTTP client API as defined by JAX-RS 2.0.

Also new in the Java EE 7 platform is the Batch API, which provides a programming model for
batch applications and a runtime for scheduling and executing jobs, and the Concurrency Utilities
API, which provides asynchronous capabilities by means of managed executor service, managed
scheduled executor service, managed thread factory, and context service.

The CDI dependency injection facility introduced in Java EE 6 is enhanced as well as more broadly
utilized by the Java EE 7 platform technologies, and the managed bean model is further aligned to
remove inconsistencies among Java EE component classes in aspects of CDI injection and
interceptor support. The declarative transaction functionality introduced by EJB is been made
available in a more general way through CDI interceptors, so that it may be leveraged by other
managed beans. The Bean Validation facility is extended to the automatic validation of method
invocations and likewise made available via CDI interceptors.

Java EE 7 also continues the "ease of development" focus of Java EE 5 and Java EE 6. Most notably,
Java EE 7 includes a revised and greatly simplified JMS 2.0 API. Ease of development encompasses

25

ease of configuration as well. To that end, Java EE 7 broadens the resource definition facilities
introduced in Java EE 6 to encompass more of the standard platform resource types, and also
provides default database and JMS connection factory resources. It also improves the configuration
of application security, including new descriptors for security permissions. Java EE 7 further
simplifies the platform by making optional the technologies that were identified as candidates for
pruning in Java EE 6, namely: EJB Entity Beans, JAX-RPC 1.1, JAXR 1.0, and JSR-88 1.2.

Finally, Java EE 7 lays groundwork for enhancements to the platform for use in cloud environments
in a future release. Such features include resource definition metadata, improved security
configuration, and support for database schema generation via the Java Persistence API.

2.19. Changes in Java EE 8
Java EE 8 continues the focus on modern web applications of Java EE 7 and broadening the range of
such applications. Java EE 8 introduces the JSON Binding API (JSON-B) for mapping between JSON
text and Java objects, building on the JSON Processing API (JSON-P) introduced in Java EE 7. The
JSON Processing API itself is updated to reflect additional JSON standards. Servlet undergoes major
enhancement with the addition of support for the new HTTP/2 protocol. JAX-RS adds support for
server-sent events and, building on concurrency facilities added in Java SE 8, a reactive client API.
The new Java EE Security API provides enhanced support for authentication and authorization in
web modules, and also introduces APIs for access to identity stores. The Bean Validation facility is
updated to reflect enhancements made in Java SE 8 and to extend the range of validated objects.
While the focus of CDI in this release is to extend its scope beyond Java EE with the introduction of
a bootstrapping API, CDI also includes enhancements for event processing and alignment on Java
SE 8 features.

2.20. Changes in Jakarta EE 8
Jakarta EE 8 is the migration of Java EE 8 from the JCP to the Eclipse Foundation. Reference the
"Specification Comparison" and “Revision History" appendices for more information.

2.21. Changes in Jakarta EE 9
The goal of the Jakarta EE 9 release is to deliver a set of specifications functionally similar to Jakarta
EE 8 but in the new Jakarta EE 9 namespace jakarta.*.

In addition, the Jakarta EE 9 release removes a small set of specifications from Jakarta EE 8 that
were old, optional, or deprecated in order to reduce the surface area of the APIs to ensure that it is
easier for new vendors to enter the ecosystem – as well as reduce the burden on implementation,
migration, and maintenance of these old APIs.

Predominantly, Jakarta EE 9 is a tooling release:

• A platform from which tooling vendors can create and update their tools to support the new
jakarta.* namespace.

• A platform that development teams can use as a stable target for testing migration of their
applications to the new namespace.

26

• A platform that runtime vendors can use to test and deliver options and capabilities that
support migration and backwards compatibility with Jakarta EE 8.

• A foundation for innovation that Jakarta EE specification projects can use to drive new features
for release in Jakarta EE 10 and beyond.

2.22. Changes in Jakarta EE 9.1
The goal of the Jakarta EE 9.1 release is to deliver a set of specifications functionally equivalent to
Jakarta EE 9 and adding the support for the Java SE 11 runtime.

Jakarta EE 9.1 is an extension to the foundational Jakarta EE 9 release. No API updates are expected
in Jakarta EE 9.1. Only the Platform and Web Profile Specifications along with the TCKs and
Compatible Implementations should be affected by Jakarta EE 9.1.

2.23. Changes in Jakarta EE 10
The goal of the Jakarta EE 10 release is to deliver a set of specifications that and adding the support
for the Java SE 11 and newer runtimes. The TCKs require support for both Java SE 11 and Java SE
17.

Jakarta EE 10 is the first release in the Jakarta EE series to include major and minor component
specification updates not limited to the javax to jakarta package namespace change.

Jakarta EE 10 also introduced a new Core Profile to support smaller runtime footprints as often
used with microservices.

2.24. Changes in Jakarta EE 11
The goal of the Jakarta EE 11 release is to deliver a set of specifications that and adding the support
for the Java SE 17 and newer runtimes. The TCKs require support for both Java SE 17 and Java SE
21.

Jakarta EE 11 removes Managed Beans, Enterprise Web Services, XML Web Services, XML Binding
and SOAP with Attachments from the platform and introduces the new Jakarta Data specification to
the platform.

27

Chapter 3. Security
This chapter describes the security requirements for the Jakarta™ Enterprise Edition (Jakarta EE)
that must be satisfied by Jakarta EE products.

In addition to the Jakarta EE requirements, each Jakarta EE Product Provider will determine the
level of security and security assurances that will be provided by their implementation.

3.1. Introduction
Almost every enterprise has security requirements and specific mechanisms and infrastructure to
meet them. Sensitive resources that can be accessed by many users or that often traverse
unprotected open networks (such as the Internet) need to be protected.

Although the quality assurances and implementation details may vary, they all share some of the
following characteristics:

• Authentication : The means by which communicating entities (for example, client and server)
prove to one another that they are acting on behalf of specific identities that are authorized for
access.

• Access control for resources : The means by which interactions with resources are limited to
collections of users or programs for the purpose of enforcing integrity, confidentiality, or
availability constraints.

• Data integrity : The means used to prove that information has not been modified by a third
party (some entity other than the source of the information). For example, a recipient of data
sent over an open network must be able to detect and discard messages that were modified
after they were sent.

• Confidentiality or Data Privacy : The means used to ensure that information is made available
only to users who are authorized to access it.

• Non-repudiation : The means used to prove that a user performed some action such that the
user cannot reasonably deny having done so.

• Auditing : The means used to capture a tamper-resistant record of security related events for the
purpose of being able to evaluate the effectiveness of security policies and mechanisms.

This chapter specifies how Jakarta EE platform requirements address security requirements, and
identifies requirements that may be addressed by Jakarta EE Product Providers. Finally, issues
being considered for future versions of this specification are briefly mentioned in Future
Directions.

3.2. A Simple Example
The security behavior of a Jakarta EE environment may be better understood by examining what
happens in a simple application with a web client, a JSP user interface, and enterprise bean
business logic. (The example is not meant to specify requirements.)

In this example, the web client relies on the web server to act as its authentication proxy by

28

collecting user authentication data from the client and using it to establish an authenticated
session.

Initial Request

The web client requests the main application URL, shown in Initial Request .

Web Client
Web Server

Request access to
protected resource

Figure 3. Initial Request

Since the client has not yet authenticated itself to the application environment, the server
responsible for delivering the web portion of the application (hereafter referred to as “web server”)
detects this and invokes the appropriate authentication mechanism for this resource.

Initial Authentication

The web server returns a form that the web client uses to collect authentication data (for
example, username and password) from the user. The web client forwards the authentication
data to the web server, where it is validated by the web server, as shown in Initial
Authentication .

Web Client Web Server

Authentication data

credential

Form

Figure 4. Initial Authentication

The validation mechanism may be local to the server, or it may leverage the underlying security
services. On the basis of the validation, the web server sets a credential for the user.

URL Authorization

The credential is used for future determinations of whether the user is authorized to access
restricted resources it may request. The web server consults the security policy (derived from
the deployment descriptor) associated with the web resource to determine the security roles that
are permitted access to the resource. The web container then tests the user’s credential against
each role to determine if it can map the user to the role. URL Authorization shows this process.

29

Web Client

Web Server

credential
protected resource

Request access to

Session
Context

A
uthentication

JSP/Servlet
Object

Figure 5. URL Authorization

The web server’s evaluation stops with an “is authorized” outcome when the web server is able to
map the user to a role. A “not authorized” outcome is reached if the web server is unable to map
the user to any of the permitted roles.

Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URLrequest, as shown
in Fulfilling the Original Request .

Web Client

Web Server

credential

Session
Context

A
uthentication

JSP/Servlet
Object

Post to business logic

Result of request

Figure 6. Fulfilling the Original Request

In our example, the response URL of a JSP page is returned, enabling the user to post form data that
needs to be handled by the business logic component of the application.

Invoking Enterprise Bean Business Methods

The JSP page performs the remote method call to the enterprise bean, using the user’s credential
to establish a secure association between the JSP page and the enterprise bean (as shown in
Invoking an Enterprise Bean Business Method). The association is implemented as two related
security contexts, one in the web server and one in the Jakarta Enterprise Beans container.

Web Client

Web Server

credential

Session
Context

JSP/Servlet
Object

Security
Context

Credential used to establish
security association

remote call

A
uthentication

EJB

Security
Context

EJB Container

Figure 7. Invoking an Enterprise Bean Business Method

The Jakarta Enterprise Beans container is responsible for enforcing access control on the enterprise

30

bean method. It consults the security policy (derived from the deployment descriptor) associated
with the enterprise bean to determine the security roles that are permitted access to the method.
For each role, the Jakarta Enterprise Beans container uses the security context associated with the
call to determine if it can map the caller to the role.

The container’s evaluation stops with an “is authorized” outcome when the container is able to
map the caller’s credential to a role. A “not authorized” outcome is reached if the container is
unable to map the caller to any of the permitted roles. A “not authorized” result causes an
exception to be thrown by the container, and propagated back to the calling JSP page.

If the call “is authorized”, the container dispatches control to the enterprise bean method. The
result of the bean’s execution of the call is returned to the JSP, and ultimately to the user by the web
server and the web client.

3.3. Security Architecture
This section describes the Jakarta EE security architecture on which the security requirements
defined by this specification are based.

3.3.1. Goals

The following are goals for the Jakarta EE security architecture:

1. Portability: The Jakarta EE security architecture must support the Write Once, Run Anywhere™
application property.

2. Transparency: Application Component Providers should not have to know anything about
security to write an application.

3. Isolation: The Jakarta EE platform should be able to perform authentication and access control
according to instructions established by the Deployer using deployment attributes, and
managed by the System Administrator.

Note that divorcing the application from responsibility for security ensures greater portability of
Jakarta EE applications.

1. Extensibility: The use of platform services by security-aware applications must not compromise
application portability.

This specification provides APIs in the component programming model for interacting with
container/server security information. Applications that restrict their interactions to the provided
APIs will retain portability.

1. Flexibility: The security mechanisms and declarations used by applications under this
specification should not impose a particular security policy, but facilitate the implementation of
security policies specific to the particular Jakarta EE installation or application.

2. Abstraction: An application component’s security requirements will be logically specified using
Java language annotations or deployment descriptors. Java language annotations or deployment
descriptors will specify how security roles and access requirements are to be mapped into
environment-specific security roles, users, and policies. A Deployer may choose to modify the

31

security properties in ways consistent with the deployment environment. The annotations or
deployment descriptor should document which security properties can be modified and which
cannot.

3. Independence: Required security behaviors and deployment contracts should be implementable
using a variety of popular security technologies.

4. Compatibility testing: The Jakarta EE security requirements architecture must be expressed in a
manner that allows for an unambiguous determination of whether or not an implementation is
compatible.

5. Secure interoperability: Application components executing in a Jakarta EE product must be able
to invoke services provided in a Jakarta EE product from a different vendor, whether with the
same or a different security policy. The services may be provided by web components or
enterprise beans.

3.3.2. Non Goals

The following are not goals for the Jakarta EE security architecture:

1. This specification does not dictate a specific security policy. Security policies for applications
and for enterprise information systems vary for many reasons unconnected with this
specification. Product Providers can provide the technology needed to implement and
administer desired security policies while adhering to the requirements of this specification.

2. This specification does not mandate a specific security technology, such as Kerberos, PK, NIS+,
or NTLM.

3. This specification does not require that the Jakarta EE security behaviors be universally
implementable using any or all security technologies.

4. This specification does not provide any warranty or assurance of the effective security of a
Jakarta EE product.

3.3.3. Terminology

This section introduces the terminology that is used to describe the security requirements of the
Jakarta EE platform.

Principal

A principal is an entity that can be authenticated by an authentication protocol in a security
service that is deployed in an enterprise. A principal is identified using a principal name and
authenticated using authentication data. The content and format of the principal name and the
authentication data can vary depending upon the authentication protocol.

Security Policy Domain

A security policy domain, also referred to as a security domain, is a scope over which a common
security policy is defined and enforced by the security administrator of the security service.

A security policy domain is also sometimes referred to as a realm. This specification uses the
security policy domain, or security domain, terminology.

32

Security Technology Domain

A security technology domain is the scope over which the same security mechanism (for
example Kerberos) is used to enforce a security policy.

A single security technology domain may include multiple security policy domains, for example.

Security Attributes

A set of security attributes is associated with every principal. The security attributes have many
uses (for example, access to protected resources and auditing of users). Security attributes can
be associated with a principal by an authentication protocol and/or by the Jakarta EE Product
Provider.

The Jakarta EE platform does not specify what security attributes are associated with a principal.

Credential

A credential contains or references information (security attributes) used to authenticate a
principal for Jakarta EE product services. A principal acquires a credential upon authentication,
or from another principal that allows its credential to be used (delegation).

This specification does not specify the contents or the format of a credential. The contents and
format of a credential can vary widely.

3.3.4. Container Based Security

Security for components is provided by their containers in order to achieve the goals for security
specified above in a Jakarta EE environment. A container provides two kinds of security (discussed
in the following sections):

• Declarative security

• Programmatic security

3.3.4.1. Declarative Security

Declarative security refers to the means of expressing an application’s security structure, including
security roles, access control, and authentication requirements in non-programmatic form. Java
language annotations and the deployment descriptor are the primary vehicles for declarative
security in the Jakarta EE platform.

Java language annotations and the deployment descriptor are a contract between an Application
Component Provider and a Deployer or Application Assembler. They can be used by an application
programmer to represent an application’s security related environmental requirements. A
deployment descriptor can be associated with groups of components.

A Deployer maps the declarative representation of the application’s security policy to a security
structure specific to the particular environment. A Deployer uses a deployment tool to process the
annotations and deployment descriptor.

At runtime, the container uses the security policy security structure derived from the declarative
security information expressed in annotations and the deployment descriptor and configured by

33

the Deployer to enforce authorization (see Authorization Model).

3.3.4.2. Programmatic Security

Programmatic security refers to security decisions made by security aware applications.
Programmatic security is useful when declarative security alone is not sufficient to express the
security model of the application. The API for programmatic security consists of methods of the
Jakarta Security SecurityContext interface, and methods of the Jakarta Enterprise Beans EJBContext
interface and the servlet HttpServletRequest interface. The methods of the Jakarta Security
SecurityContext interface are intended to supersede the corresponding methods of the EJBContext
and HttpServletRequest interfaces.

These methods allow components to make business logic decisions based on the security role of the
caller or remote user. For example they allow the component to determine the principal name of
the caller or remote user to use as a database key. (Note that the form and content of principal
names will vary widely between products and enterprises, and portable components will not
depend on the actual contents of a principal name. Due to principal name mapping, the same
logical principal may have different names in different containers, although usually it will be
possible to configure a single product to use consistent principal names. In particular, if a principal
name is used as a key into a database table, and that database table is accessed from multiple
components, containers, or products, the same logical principal may map to different entries in the
database.)

3.3.5. Distributed Security

Some Product Providers may produce Jakarta EE products in which the containers for various
component types are distributed. In a distributed environment, communication between Jakarta EE
components can be subject to security attacks (for example, data modification and replay attacks).

Such threats can be countered by using a secure association to secure communications. A secure
association is shared security state information that establishes the basis of a secure
communication between components. Establishing a secure association could involve several steps,
such as:

1. Authenticating the target principal to the client and/or authenticating the client to the target
principal.

2. Negotiating a quality of protection, such as confidentiality or integrity.

3. Setting up a security context for the association between the components.

Since a container provides security in Jakarta EE, secure associations for a component are typically
established by a container. Secure associations for web access are specified here. Secure
associations for access to enterprise beans are described in the Jakarta Enterprise Beans
specification.

Product Providers may allow for control over the quality of protection or other aspects of secure
association at deployment time. Applications can specify their requirements for access to web
resources using annotations or elements in their deployment descriptor.

This specification does not define mechanisms that an Application Component Provider can use to

34

communicate requirements for secure associations with an enterprise bean.

3.3.6. Authorization Model

The Jakarta EE authorization model is based on the concept of security roles. A security role is a
logical grouping of users that is defined by an Application Component Provider or Assembler. A
Deployer maps roles to security identities (for example principals, and groups) in the operational
environment. Security roles are used with both declarative security and programmatic security.

Declarative authorization can be used to control access to an enterprise bean method and is
specified in annotations or in the enterprise bean deployment descriptor. The RolesAllows ,
PermitAll , and DenyAll annotations are used to specify method permissions. An enterprise bean
method can also be associated with a method-permission element in the deployment descriptor. The
method-permission element contains a list of methods that can be accessed by a given security role.
If the calling principal is in one of the security roles allowed access to a method, the principal is
allowed to execute the method. Conversely, if the calling principal is in none of the roles, the caller
is not allowed to execute the method. Access to web resources can be protected in a similar
manner.

Security roles are used in the SecurityContext method isCallerInRole , the EJBContext method
isCallerInRole , and the HttpServletRequest method isUserInRole . Each method returns true if the
calling principal is in the specified security role.

3.3.6.1. Role Mapping

Enforcement of security constraints on web resources or enterprise beans, whether programmatic
or declarative, depends upon determination of whether the principal associated with an incoming
request is in a given security role. A container makes this determination based on the security
attributes of the calling principal. For example,

1. A Deployer may have mapped a security role to a user group in the operational environment or
may depend on the default mapping of security roles to user groups as defined by the Jakarta
Security specification. In this case, the user group of the calling principal is retrieved from its
security attributes. The principal is in the security role if the principal’s user group matches a
user group to which the security role has been mapped.

2. A Deployer may have mapped a security role to a principal name in a security policy domain. In
this case, the principal name of the calling principal is retrieved from its security attributes. If
this principal name is the same as a principal name to which the security role was mapped, the
calling principal is in the security role.

The source of security attributes may vary across implementations of the Jakarta EE platform.
Security attributes may be transmitted in the calling principal’s credential or in the security
context. In other cases, security attributes may be retrieved from an identity store, or from a
trusted third party, such as a directory service or a security service.

3.3.7. HTTP Login Gateways

Secure interoperability between enterprise beans in different security policy domains is addressed
in the Jakarta Enterprise Beans specification. In addition, a component may choose to log in to a

35

foreign server via HTTP. An application component can be configured to use SSL mutual
authentication for security when accessing a remote resource using HTTP. Applications using HTTP
in this way may choose to use XML or some other structured format, rather than HTML.

We call the use of HTTP with SSL mutual authentication to access a remote service an HTTP Login
Gateway. Requirements in this area are specified in Authentication by Web Clients.

3.3.8. User Authentication

User authentication is the process by which a user proves his or her identity to the system. This
authenticated identity is then used to perform authorization decisions for accessing Jakarta EE
application components. An end user can authenticate using either of the two supported client
types:

• Web client

• Application client

3.3.8.1. Authentication by Web Clients

It is required that a web client be able to authenticate a user to a web server using any of the
following mechanisms. The Deployer or System Administrator determines which method to apply
to an application or to a group of applications.

• HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism supported by the HTTP protocol. This
mechanism is based on a username and password. A web server requests a web client to
authenticate the user. As part of the request, the web server passes the realm in which the user is to
be authenticated. The web client obtains the username and the password from the user and
transmits them to the web server. The web server then authenticates the user in the specified realm
(referred to as HTTP Realm in this document).

HTTP Basic Authentication is not secure. Passwords are sent in simple base64 encoding. The target
server is not authenticated. Additional protection can be applied to overcome these weaknesses.
The password may be protected by applying security at the transport layer (for example HTTPS) or
at the network layer (for example, IPSEC or VPN).

Despite its limitations, the HTTP Basic Authentication mechanism is included in this specification
because it is widely used in form based applications.

• HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication mechanism. This
mechanism requires the user to possess a Public Key Certificate (PKC). Currently, a PKC is rarely
used by end users on the Internet. However, it is useful for e-commerce applications and also for a
single-signon from within the browser. For these reasons, HTTPS client authentication is a required
feature of the Jakarta EE platform.

• Form Based Authentication

36

The look and feel of a login screen cannot be varied using the web browser’s built-in authentication
mechanisms. This specification introduces the ability to package standard HTML or servlet/JSP/JSF
based forms for logging in, allowing customization of the user interface. The form based
authentication mechanism introduced by this specification is described in the Servlet specification.

HTTP Digest Authentication is not widely supported by web browsers and hence is not required.

A web client can employ a web server as its authentication proxy. In this case, a client’s credential
is established in the server, where it may be used by the server for various purposes: to perform
authorization decisions, to act as the client in calls to enterprise beans, or to negotiate secure
associations with resources. Current web browsers commonly rely on proxy authentication.

3.3.8.2. Web Single Signon

HTTP is a stateless protocol. However, many web applications need support for sessions that can
maintain state across multiple requests from a client. Therefore, it is desirable to:

1. Make login mechanisms and policies a property of the environment the web application is
deployed in.

2. Be able to use the same login session to represent a user to all the applications that he or she
accesses.

3. Require re-authentication of users only when a security policy domain boundary has been
crossed.

Credentials that are acquired through a web login process are associated with a session. The
container uses the credentials to establish a security context for the session. The container uses the
security context to determine authorization for access to web resources and for the establishment
of secure associations with other components (including enterprise beans).

3.3.8.3. Login Session

In the Jakarta EE platform, login session support is provided by a web container. When a user
successfully authenticates with a web server, the container establishes a login session context for
the user. The login session contains the credentials associated with the user.[1]

3.3.8.4. Authentication by Application Clients

Application clients (described in detail in Application Clients) are client programs that may interact
with enterprise beans directly (that is, without the help of a web browser and without traversing a
web server). Application clients may also access web resources.

Application clients, like the other Jakarta EE application component types, execute in a managed
environment that is provided by an appropriate container. Application clients are expected to have
access to a graphical display and input device, and are expected to communicate with a human
user.

Application clients are used to authenticate end users to the Jakarta EE platform, when the users
access protected web resources or enterprise beans.

37

3.3.9. Lazy Authentication

There is a cost associated with authentication. For example, an authentication process may require
exchanging multiple messages across the network. Therefore, it is desirable to use lazy
authentication, that is, to perform authentication only when it is needed. With lazy authentication,
a user is not required to authenticate until there is a request to access a protected resource.

Lazy authentication can be used with first-tier application clients when they request access to
protected resources that require authentication. At that point the user can be asked to provide
appropriate authentication data. If a user is successfully authenticated, the user is allowed to access
the resource.

3.4. User Authentication Requirements
The Jakarta EE Product Provider must meet the following requirements concerning user
authentication.

3.4.1. Login Sessions

All Jakarta EE web servers must maintain a login session for each web user. It must be possible for
a login session to span more than one application, allowing a user to log in once and access multiple
applications. The required login session support is described in the Servlet specification. This
requirement of a session for each web user supports single signon.

Applications can remain independent of the details of implementing the security and maintenance
of login information. The Jakarta EE Product Provider has the flexibility to choose authentication
mechanisms independent of the applications secured by these mechanisms.

Lazy authentication must be supported by web servers for protected web resources. When
authentication is required, one of the three required login mechanisms listed in the next section
may be used.

3.4.2. Required Login Mechanisms

All Jakarta EE products are required to support three login mechanisms: HTTP basic authentication,
SSL mutual authentication, and form-based login. An application is not required to use any of these
mechanisms, but they are required to be available for any application’s use.

3.4.2.1. HTTP Basic Authentication

All Jakarta EE products are required to support HTTP basic authentication (RFC2068). Platform
Providers are also required to support basic authentication over SSL.

3.4.2.2. SSL Mutual Authentication

TLS 1.2 and the means to perform mutual (client and server) certificate-based authentication are
required by this specification.

All Jakarta EE products must also support TLS 1.1 and TLS 1.0, to ensure interoperable secure

38

communications with clients; however, TLS 1.0 should be disabled if not needed for a given
deployment, and TLS 1.1 may be disabled if not needed.

Similarly, all Jakarta EE products must support the following cipher suites, to ensure interoperable
secure communications with clients:

• TLS_RSA_WITH_AES_128_CBC_SHA

• TLS_DHE_RSA_WITH_AES_128_CBC_SHA

• TLS_ECDH_RSA_WITH_AES_128_CBC_SHA

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

However, it is recommended to use the strongest possible cipher suite that can be negotiated
between client and server, and the above cipher suites may be disabled in favor of stronger cipher
suites, if not needed for a given deployment.

Note that previous versions of this specification required support for SSL 3.0, and for the following
cipher suites:

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL 3.0 was officially deprecated by RFC 7568 in 2015, and is unsupported or disabled by default in
many TLS implementations. None of the above cipher suites is currently considered secure, and
may be unsupported or disabled by default. In extreme cases, it may be necessary to use SSL 3.0, or
to negotiate one of the above cipher suites, in order to interoperate with an older client or a
previous version of Jakarta EE. However, it is recommended to use TLS 1.0 or higher, and to
negotiate a stronger cipher suite, whenever possible. SSL 3.0, and the above listed cipher suites,
should be disabled if not needed for interoperability in a given deployment.

3.4.2.3. Form Based Login

The web application deployment descriptor contains an element that causes a Jakarta EE product to
associate an HTML form resource (perhaps dynamically generated) with the web application. If the
Deployer chooses this form of authentication (over HTTP basic, or SSL certificate based
authentication), this form must be used as the user interface for login to the application.

The form based login mechanism and web application deployment descriptors are described in the

39

Servlet specification.

3.4.3. Unauthenticated Users

Web containers are required to support access to web resources by clients that have not
authenticated themselves to the container. This is the common mode of access to web resources on
the Internet.

A web container reports that no user has been authenticated by returning null from the
SecurityContext method getCallerPrincipal or the HttpServletRequest method getUserPrincipal . This
is different than the result of the EJBContext method getCallerPrincipal . The Jakarta Enterprise
Beans specification requires that the EJBContext method getCallerPrincipal always return a valid
Principal object. This method can never return null . The SecurityContext method getCallerPrincipal
can also be called in the Jakarta Enterprise Beans container, and still returns null for anonymous
users.

In Jakarta EE products that contain both a web container and an Jakarta Enterprise Beans
container, components running in a web container must be able to call enterprise beans even when
no user has been authenticated in the web container. When a call is made in such a case from a
component in a web container to an enterprise bean, a Jakarta EE product must provide a principal
for use in the call.

A Jakarta EE product may provide a principal for use by unauthenticated callers using many
approaches, including, but not limited to:

• Always use a single distinguished principal.

• Use a different distinguished principal per server, or per session, or per application.

• Allow the deployer or system administrator to choose which principal to use through the Run
As capability of the web and enterprise bean containers.

This specification does not specify how a Jakarta EE product should choose a principal to represent
unauthenticated users, although future versions of this specification may add requirements in this
area. Note that the Jakarta Enterprise Beans specification does include requirements in this area
when using the Jakarta Enterprise Beans interoperability protocol. Applications are encouraged to
use the Run As capability in cases where the web component may be unauthenticated and needs to
call Jakarta Enterprise Beans components.

3.4.4. Application Client User Authentication

The application client container must provide authentication of application users to satisfy the
authentication and authorization constraints enforced by the enterprise bean containers and web
containers. The techniques used may vary with the implementation of the application client
container, and are beyond the control of the application. The application client container may
integrate with a Jakarta EE product’s authentication system, to provide a single signon capability, or
the container may authenticate the user when the application is started. The container may delay
authentication until there is a request to access a protected resource or enterprise bean.

The container will provide an appropriate user interface for interactions with the user to gather

40

authentication data. In addition, an application client may provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class name in its deployment
descriptor (see Jakarta EE Application Client XML Schema for details). The Deployer may override
the callback handler specified by the application and require use of the container’s default
authentication user interface instead.

If use of a callback handler has been configured by the Deployer, the application client container
must instantiate an object of this class and use it for all authentication interactions with the user.
The application’s callback handler must support all the Callback objects specified in the
javax.security.auth.callback package.

3.4.5. Resource Authentication Requirements

Resources within an enterprise are often deployed in security policy domains different from the
security policy domain of the application component. The wide variance of authentication
mechanisms used to authenticate the caller to resources leads to the requirement that a Jakarta EE
product provide the means to authenticate in the security policy domain of the resource.

A Product Provider must support both of the following:

1. Configured Identity. A Jakarta EE container must be able to authenticate for access to the
resource using a principal and authentication data specified by a Deployer at deployment
time.The authentication must not depend in any way on data provided by the application
components. Providing for the confidential storage of the authentication information is the
responsibility of the Product Provider.

2. Programmatic Authentication. The Jakarta EE product must provide for specification of the
principal and authentication data for a resource by the application component at runtime using
appropriate APIs. The application may obtain the principal and authentication data through a
variety of mechanisms, including receiving them as parameters, obtaining them from the
component’s environment, and so forth.

In addition, the following techniques are recommended but not required by this specification:

1. Principal Mapping. A resource can have a principal and attributes that are determined by a
mapping from the identity and security attributes of the requesting principal. In this case, a
resource principal is not based on inheritance of the identity or security attributes from a
requesting principal, but gets its identity and security attributes based on the mapping.

2. Caller Impersonation. A resource principal acts on behalf of a requesting principal. Acting on
behalf of a caller principal requires delegation of the caller’s identity and credentials to the
underlying resource manager. In some scenarios, a requesting principal can be a delegate of an
initiating principal and the resource principal is transitively impersonating an initiating
principal.

The support for principal delegation is typically specific to a security mechanism. For example,
Kerberos supports a mechanism for the delegation of authentication. (Refer to the Kerberos v5
specification for more details.)

1. Credentials Mapping. This technique may be used when an application server and an EIS
support different authentication domains. For example:

41

2. The initiating principal may have been authenticated and have public key certificate-based
credentials.

3. The security environment for the resource manager may be configured with the Kerberos
authentication service.

The application server is configured to map the public key certificate-based credentials associated
with the initiating principal to the Kerberos credentials.

Additional information on resource authentication requirements can be found in the Connector
specification.

3.5. Authorization Requirements
To support the authorization models described in this chapter, the following requirements are
imposed on Jakarta EE products.

3.5.1. Code Authorization

A Jakarta EE product may restrict the use of certain Java SE classes and methods to secure and
ensure proper operation of the system. The minimum set of permissions that a Jakarta EE product
is required to grant to a Jakarta EE application is defined in Java Platform, Standard Edition (Java
SE) Requirements. All Jakarta EE products must be capable of deploying application components
with exactly these permissions.

A Jakarta EE Product Provider may choose to enable selective access to resources using the Java
protection model. The mechanism used is Jakarta EE product dependent.

3.5.2. Caller Authorization

A Jakarta EE product must enforce the access control rules specified at deployment time (see
Deployment Requirements) and more fully described in the Jakarta Enterprise Beans and Servlet
specifications.

3.5.3. Propagated Caller Identities.

In a Jakarta EE product that contains an Jakarta Enterprise Beans container, it must be possible to
configure the Jakarta EE product so that a propagated caller identity is used in all authorization
decisions. With this configuration, for all calls to all enterprise beans from a single application
within a single Jakarta EE product, the principal name returned by the EJBContext method
getCallerPrincipal or the SecurityContext method getCallerPrincipal must be the same as that
returned by the first enterprise bean in the call chain. If the first enterprise bean in the call chain is
called by a servlet or JSP page, the principal name must be the same as that returned by the
HttpServletRequest method getUserPrincipal or the SecurityContext method getCallerPrincipal in the
calling servlet or JSP page. (However, if the HttpServletRequest or SecurityContext method
getCallerPrincipal returns null , the principal used in calls to enterprise beans is not specified by
this specification, although it must still be possible to configure enterprise beans to be callable by
such components.)

42

Note that this does not require delegation of credentials, only identification of the caller. A single
principal must be the principal used in authorization decisions for access to all enterprise beans in
the call chain. The requirements in this section apply only when a Jakarta EE product has been
configured to propagate caller identity.

3.5.4. Run As Identities

Jakarta EE products must also support the Run As capability that allows the Application Component
Provider and the Deployer to specify an identity under which an enterprise bean or web
component must run. In this case it is the Run As identity that is propagated to subsequent Jakarta
Enterprise Beans components, rather than the original caller identity.

Note that this specification doesn’t specify any relationship between the Run As identity and any
underlying operating system identity that may be used to access system resources such as files.
However, the Jakarta Authorization specification does specify the relationship between the Run As
identity and the access control context.

3.6. Deployment Requirements
All Jakarta EE products must implement the access control semantics described in all included
component specifications, such as the Jakarta Enterprise Beans, Jakarta Server Pages, and Jakarta
Servlet specifications; provide a means of mapping the security roles specified in metadata
annotations or the deployment descriptor to the actual roles exposed by a Jakarta EE product; and
support the default mapping from user groups to roles defined by the Jakarta Security specification.

While most Jakarta EE products will allow the Deployer to customize the role mappings and change
the assignment of roles to methods, all Jakarta EE products must support the ability to deploy
applications and components using exactly the mappings and assignments specified in their
metadata annotations or deployment descriptors.

As described in the Jakarta Enterprise Beans specification and the Servlet specification, a Jakarta EE
product must provide a deployment tool or tools capable of assigning the security roles in metadata
annotations or deployment descriptors to the entities that are used to determine role membership
at authorization time.

Application developers will need to specify (in the application’s metadata annotations or
deployment descriptors) the security requirements of an application in which some components
may be accessed by unauthenticated users as well as authenticated users (as described above in
Unauthenticated Users). Applications express their security requirements in terms of security roles,
which the Deployer maps to users (principals) in the operational environment at deployment time.
An application might define a role representing all authenticated and unauthenticated users and
configure some enterprise bean methods to be accessible by this role.

To support such usage, this specification requires that it be possible to map an application defined
security role to the universal set of application principals independent of authentication.

43

3.7. Future Directions

3.7.1. Auditing

This specification does not specify requirements for the auditing of security relevant events, nor
APIs for application components to generate audit records. A future version of this specification
may include such a specification for products that choose to provide auditing.

3.7.2. Instance-based Access Control

Some applications need to control access to their data based on the content of the data, rather than
simply the type of the data. We refer to this as “instance-based” rather than “class-based” access
control. We hope to address this in a future release.

3.7.3. User Registration

Web-based internet applications often need to manage a set of customers dynamically, allowing
users to register themselves as new customers. This scenario was widely discussed in the Servlet
expert group (JSR-53) but we were unable to achieve consensus on the appropriate solution. We
had to abandon this work for J2EE 1.3, and were not able to address it for J2EE 1.4, but hope to
pursue it further in a future release.

[1] While the client is stateless with respect to authentication, the client requires that the server act as its proxy and maintain its
login context. A reference to the login session state is made available to the client through cookies or URL re-writing. If SSL mutual
authentication is used as the authentication protocol, the client can manage its own authentication context, and need not depend
on references to the login session state.

44

Chapter 4. Transaction Management
This chapter describes the required Jakarta Enterprise Edition (Jakarta EE) transaction
management and runtime environment.

Product Providers must transparently support transactions that involve multiple components and
transactional resources within a single Jakarta EE product, as described in this chapter. This
requirement must be met regardless of whether the Jakarta EE product is implemented as a single
process, multiple processes on the same network node, or multiple processes on multiple network
nodes.

If the following components are included in a Jakarta EE product, they are considered transactional
resources and must behave as specified here:

• JDBC connections

• Jakarta Messaging sessions

• Resource adapter connections for resource adapters specifying the XATransaction transaction
level

4.1. Overview
A Jakarta EE Product that includes both a servlet container and an enterprise bean container must
support a transactional application comprised of combinations of web application components
accessing multiple enterprise beans within a single transaction. If the Jakarta EE product also
includes support for the Connectors specification, each component may also acquire one or more
connections to access one or more transactional resource managers.

For example, in Servlets/Server Pages Accessing Enterprise Beans , the call tree starts from a servlet
or server pages accessing multiple enterprise beans, which in turn may access other enterprise
beans. The components access resource managers via connections.

45

O
ne or m

ore transactional resource m
anagers

Client JSP/
Servlet

EJBean

1 a

EJBean

1 b

EJBean

2 a

EJBean

2 b

EJBean

2 c

EJBean

2 d

O
ne or m

ore transactional resource m
anagers

connection

connections

connection

connection

connection

connection

connection

Figure 8. Servlets/Server Pages Accessing Enterprise Beans

The Application Component Provider specifies, using a combination of programmatic and
declarative transaction demarcation APIs, how the platform must manage transactions on behalf of
the application.

For example, the application may require that all the components in Servlets/Server Pages
Accessing Enterprise Beans access resources as part of a single transaction. The Platform Provider
must provide the transaction capabilities to support such a scenario.

This specification does not define how the components and the resources are partitioned or
distributed within a single Jakarta EE product. In order to achieve the transactional semantics
required by the application, the Jakarta EE Product Provider is free to execute the application
components sharing a transaction in the same Java virtual machine, or distribute them across
multiple virtual machines, in accordance with the requirements of the component specifications.

The rest of this chapter describes the transactional requirements for a Jakarta EE product in more
detail.

4.2. Requirements
This section defines the transaction support requirements of Jakarta EE Products that must be
supported by Product Providers.

46

4.2.1. Web Components

Web components may demarcate transactions using the jakarta.transaction.UserTransaction
interface or transactional interceptors, which are defined in the Jakarta Transactions specification.
They may access multiple resource managers and invoke multiple enterprise beans within a single
transaction. The specified transaction context is automatically propagated to the enterprise beans
and transactional resource managers. The result of the propagation may be subject to the
enterprise bean transaction attributes (for example, a bean may be required to use Container
Managed Transactions).

Web application event listeners and upgrade handlers must not demarcate transactions using the
jakarta.transaction.UserTransaction interface or transactional interceptors. Servlet filters may use
transactional resources within their doFilter methods but should not use any transactional
resources in the methods of any objects used to wrap the request or response objects.

4.2.1.1. Transaction Requirements

The Jakarta EE platform must meet the following requirements:

• The Jakarta EE platform must provide an object implementing the
jakarta.transaction.UserTransaction interface to all web components. The platform must
publish the UserTransaction object in the Java™ Naming and Directory Interface (JNDI) name
space available to web components under the name java:comp/UserTransaction.

• The Jakarta EE platform must provide classes that implement the transactional interceptors, as
defined by the Jakarta Transactions specification.

• If a web component invokes an enterprise bean from a thread associated with a transaction
defined by the Jakarta Transactions specification, the Jakarta EE platform must propagate the
transaction context with the enterprise bean invocation. Whether the target enterprise bean
will be invoked in this transaction context or not is determined by the rules defined in the
Jakarta Enterprise Beans specification.

Note that this transaction propagation requirement applies only to invocations of enterprise beans
in the same Jakarta EE product instance [1] as the invoking component. Invocations of enterprise
beans in another Jakarta EE product instance (for example, using the Jakarta Enterprise Beans
interoperability protocol) need not propagate the transaction context. See the Jakarta Enterprise
Beans specification for details.

• If a web component accesses a transactional resource manager from a thread associated with a
transaction defined by the Jakarta Transactions specification, the Jakarta EE platform must
ensure that the resource access is included as part of the transaction defined by the Jakarta
Transactions specification.

• If a web component creates a thread, the Jakarta EE platform must ensure that the newly
created thread is not associated with any transaction defined by the Jakarta Transactions
specification.

4.2.1.2. Transaction Non-Requirements

The Product Provider is not required to support the importing of a transaction context from a client

47

to a web component.

The Product Provider is not required to support transaction context propagation via an HTTP
request across web components. The HTTP protocol does not support such transaction context
propagation. When a web component associated with a transaction makes an HTTP request to
another web component, the transaction context is not propagated to the target servlet or page.

However, when a web component is invoked through the RequestDispatcher interface, any active
transaction context must be propagated to the called servlet or server pages.

4.2.2. Transactions in Web Component Life Cycles

Transactions may not span web requests from a client on the network. If a web component starts a
transaction in the service or doFilter method (or transactional interceptor of service or doFilter
method), it must be completed before the service or doFilter method returns to the network
client.[2] Returning from the service or doFilter method to the network client with an active
transaction context is an error. The web container is required to detect this error and abort the
transaction.

As specified above in Transaction Non-Requirements, requests made within a web container using
the RequestDispatcher must propagate any transaction context to the called class. Unless the called
class commits or aborts the transaction, the transaction must remain active when the called class
returns.

If a servlet that is called via the RequestDispatcher starts a transaction, the behavior of the
container with regard to that transaction is unspecified when the servlet returns from its service
method. The web container may throw an exception to the caller, abort the transaction and return
to the caller without error, or propagate the transaction context back to the caller. Portable servlets
will complete any transaction they start before returning from the service method.

4.2.3. Transactions and Threads

There are many subtle and complex interactions between the use of transactional resources and
threads. To ensure correct operation, web components should obey the following guidelines, and
the web container must support at least these usages.

• Transactions defined by the Jakarta Transactions specification should be started and completed
in the thread in which the service method is called. Additional threads that are created for any
purpose should not attempt to start transactions defined by the Jakarta Transactions
specification.

• Transactional resources may be acquired and released by a thread other than the service
method thread, but should not be shared between threads.

• Transactional resource objects (for example, JDBC Connection objects) should not be stored in
static fields. Such objects can only be associated with one transaction at a time. Storing them in
static fields would make it easy to erroneously share them between threads in different
transactions.

• Web components implementing SingleThreadModel may store top-level transactional resource
objects in class instance fields. A top-level object is one acquired directly from a container

48

managed connection factory object (for example, a JDBC Connection acquired from a JDBC
ConnectionFactory), as opposed to other objects acquired from these top-level objects (for
example, a JDBC Statement acquired from a JDBC Connection). The web container ensures that
requests to a SingleThreadModel servlet are serialized and thus only one thread and one
transaction will be able to use the object at a time, and that the top-level object will be enlisted
in any new transaction started by the component.

• In web components not implementing SingleThreadModel , transactional resource objects, as
well as Jakarta Persistence EntityManager objects, should not be stored in class instance fields,
and should be acquired and released within the same invocation of the service method.

• Web components that are called by other web components (using the forward or include
methods) should not store transactional resource objects in class instance fields.

• Enterprise beans may be invoked from any thread used by a web component. Transaction
context propagation requirements are described above and in the Jakarta Enterprise Beans
specification.

4.2.4. Jakarta Enterprise Beans Components

The Jakarta EE Product Provider must provide support for transactions as defined in the Jakarta
Enterprise Beans specification.

4.2.5. Application Clients

The Jakarta EE Product Provider is not required to provide transaction management support for
application clients.

4.2.6. Transactional JDBC™ Technology Support

A Jakarta EE product must support a JDBC technology database as a transactional resource
manager. The platform must enable transactional JDBC API access from web components and
enterprise beans.

It must be possible to access the JDBC technology database from multiple application components
within a single transaction. For example, a servlet may wish to start a transaction, access a
database, invoke an enterprise bean that accesses the same database as part of the same
transaction, and, finally, commit the transaction.

A Jakarta EE product must provide a transaction manager that is capable of coordinating two-phase
commit operations across multiple XA-capable JDBC databases. If a JDBC driver supports the Java
SE API’s XA interfaces (in the javax.transaction.xa package), then the Jakarta EE product must be
capable of using the XA interfaces provided by the JDBC driver to accomplish two-phase commit
operations. The Jakarta EE product may discover the XA capabilities of JDBC drivers through
product-specific means, although normally such JDBC drivers would be delivered as resource
adapters using the Connector API.

4.2.7. Transactional Jakarta Messaging Support

A Jakarta EE product must support a Jakarta Messaging provider as a transactional resource

49

manager. The platform must enable transactional Jakarta Messaging access from servlets, server
pages, and enterprise beans.

It must be possible to access the Jakarta Messaging provider from multiple application components
within a single transaction. For example, a servlet may wish to start a transaction, send a Jakarta
Messaging message, invoke an enterprise bean that also sends a Jakarta Messaging message as part
of the same transaction, and, finally, commit the transaction.

4.2.8. Transactional Resource Adapter (Connector) Support

A Jakarta EE product must support resource adapters that use XATransaction mode as transactional
resource managers. The platform must enable transactional access to the resource adapter from
servlets, server pages, and enterprise beans.

It must be possible to access the resource adapter from multiple application components within a
single transaction. For example, a servlet may wish to start a transaction, access the resource
adapter, invoke an enterprise bean that also accesses the resource adapter as part of the same
transaction, and, finally, commit the transaction.

4.3. Transaction Interoperability

4.3.1. Multiple Jakarta EE Platform Interoperability

This specification does not require the Product Provider to implement any particular protocol for
transaction interoperability across multiple Jakarta EE products. Jakarta EE compatibility requires
neither interoperability among identical Jakarta EE products from the same Product Provider, nor
among heterogeneous Jakarta EE products from multiple Product Providers.

We recommend that Jakarta EE Product Providers use the IIOP transaction propagation protocol
defined by OMG and described in the OTS specification, transaction interoperability when using the
Jakarta Enterprise Beans interoperability protocol based on RMI-IIOP.

4.3.2. Support for Transactional Resource Managers

This specification requires all Jakarta EE products to support the javax.transaction.xa.XAResource
interface, as referenced in the Connectors specification. This specification also requires all Jakarta
EE products to support the javax.transaction.xa.XAResource interface for performing two-phase
commit operations on JDBC drivers that support the Java SE XA APIs. This specification does not
require that JDBC drivers or Jakarta Messaging providers use the javax.transaction.xa.XAResource
interface, although they may use this interface and in all cases they must meet the transactional
resource manager requirements described in this chapter. In particular, it must be possible to
combine operations on one or more JDBC databases, one or more Jakarta Messaging sessions, one
or more enterprise beans, and multiple resource adapters supporting the XATransaction mode in a
single transaction defined by the Jakarta Transactions specification.

4.4. Local Transaction Optimization

50

4.4.1. Requirements

If a transaction uses a single resource manager, performance may be improved by using a resource
manager specific local optimization. A local transaction is typically more efficient than a global
transaction and provides better performance. Local optimization is not available for transactions
that are imported from a different container.

Containers may choose to provide local transaction optimization, but are not required to do so.
Local transaction optimization must be transparent to a Jakarta EE application.

The following section describes a possible mechanism for local transaction optimization by
containers.

4.4.2. A Possible Design

This section illustrates how the previously described requirements might be implemented.

When the first connection to a resource manager is established as part of the transaction, a
resource manager specific local transaction is started on the connection. Any subsequent
connection acquired as part of the transaction that can share the local transaction on the first
connection is allowed to share the local transaction.

A global transaction is started lazily under the following conditions:

• When a subsequent connection cannot share the resource manager local transaction on the first
connection, or if it uses a different resource manager.

• When a transaction is exported to a different container.

After the lazy start of a global transaction, any subsequent connection acquired may either share
the local transaction on the first connection, or be part of the global transaction, depending on the
resource manager it accesses.

When a transaction completion (commit or rollback) is attempted, there are two possibilities:

• If only a single resource manager had been accessed as part of the transaction, the transaction
is completed using the resource manager specific local transaction mechanism.

• If a global transaction had been started, the transaction is completed treating the resource
manager local transaction as a last resource in the global 2-phase commit protocol, that is using
the last resource 2-phase commit optimization.

4.5. Connection Sharing
When multiple connections acquired by a Jakarta EE application use the same resource manager,
containers may choose to provide connection sharing within the same transaction scope. Sharing
connections typically results in efficient usage of resources and better performance. Containers are
required to provide connection sharing in certain situations; see the Connector specification for
details.

Connections to resource managers acquired by Jakarta EE applications are considered potentially

51

shared or shareable. A Jakarta EE application component that intends to use a connection in an
unshareable way must provide deployment information to that effect, to prevent the connection
from being shared by the container. Examples of when this may be needed include situations with
changed security attributes, isolation levels, character settings, and localization configuration.
Containers must not attempt to share connections that are marked unshareable. If a connection is
not marked unshareable, it must be transparent to the application whether the connection is
actually shared or not.

Jakarta EE application components may use the optional shareable element of the Resource
annotation or the optional deployment descriptor element res-sharing-scope to indicate whether a
connection to a resource manager is shareable or unshareable. Containers must assume
connections to be shareable if no deployment hint is provided. Jakarta EE Application Client XML
Schema, the Jakarta Enterprise Beans specification, and the Servlet specification provide
descriptions of the deployment descriptor element.

Jakarta EE application components may cache connection objects and reuse them across multiple
transactions. Containers that provide connection sharing must transparently switch such cached
connection objects (at dispatch time) to point to an appropriate shared connection with the correct
transaction scope. Refer to the Connector specification for a detailed description of connection
sharing.

4.6. JDBC and Jakarta Messaging Deployment Issues
The JDBC transaction requirements in Transactional JDBC™ Technology Support and the Jakarta
Messaging transaction requirements in Transactional Jakarta Messaging Support may impose some
restrictions on a Deployer’s configuration of an application’s JDBC and Jakarta Messaging
resources. Jakarta EE Product Providers may impose the restrictions described in this section to
meet these requirements.

If the deployer configures a non-XA-capable JDBC resource manager in a transaction, then a Jakarta
EE Product Provider may restrict all JDBC access within that transaction to that non-XA-capable
JDBC resource manager. Otherwise, a Jakarta EE Product Provider must support use of multiple XA-
capable JDBC resource managers within a transaction. In addition, a Jakarta EE Product Provider
may restrict the security configuration of all JDBC connections within a transaction to a single user
identity. A Jakarta EE Product Provider is not required to support transactions where more than
one JDBC identity is used. Specifically, this means that transactions that require the use of more
than one JDBC security identity (which can be done explicitly via component provided user name
and password) may not be portable.

A Jakarta EE Product Provider may make the same restrictions as above, resulting in a transaction
being restricted to a single Jakarta Messaging resource manager and user identity.

In addition, when both a JDBC resource manager and a Jakarta Messaging resource manager are
used in the same transaction, a Jakarta EE Product Provider may restrict both to a pairing that
allows their combination to deliver the full transactional semantics required by the application,
and may restrict the security identity of both to a single identity. To fully support such usage,
portable applications that wish to include JDBC and Jakarta Messaging access in a single global
transaction must not mark the corresponding transactional resources as “unshareable”.

52

Although these restrictions are allowed, it is recommended that Jakarta EE Product Providers
support JDBC and Jakarta Messaging resource managers that provide full two-phase commit
functionality and, as a result, do not impose these restrictions.

4.7. Two-Phase Commit Support
A Jakarta EE product must support the use of multiple XA-capable resource adapters in a single
transaction. To support such a scenario, full two-phase commit support is required. A Jakarta
Messaging provider may be provided as an XA-capable resource adapter. In such a case, it must be
possible to include Jakarta Messaging operations in the same global transaction as other resource
adapters. While JDBC drivers are not required to be XA-capable, a JDBC driver may be delivered as
an XA-capable resource adapter. In such a case, it must be possible to include JDBC operations in
the same global transaction as other XA-capable resource adapters. See also Transactional JDBC™
Technology Support.

4.8. System Administration Tools
Although there are no compatibility requirements for system administration capabilities, the
Jakarta EE Product Provider will typically include tools that allow the System Administrator to
perform the following tasks:

• Integrate transactional resource managers with the platform.

• Configure the transaction management parts of the platform.

• Monitor transactions at runtime.

• Receive notifications of abnormal transaction processing conditions (such as abnormally high
number of transaction rollbacks).

[1] A product instance corresponds to a single installation of a Jakarta™ EE product. A single product instance might use multiple
operating system processes, or might support multiple host machines as part of a distributed container. In contrast, it might be
possible to run multiple instances of a product on a single host machine, or possibly even in a single Java virtual machine, for
example, as part of a virtual hosting solution. The transaction propagation requirement applies within a single product instance
and is independent of the number of Java virtual machines, operating system processes, or host machines used by the product
instance.

[2] For a Jakarta™ Server Pages page, this requirement applies to the service method of the equivalent Jakarta™ Server Pages page
Implementation Class.

53

Chapter 5. Resources, Naming, and Injection
This chapter describes how applications declare dependencies on external resources and
configuration parameters, and how those items are represented in the Jakarta EE naming system
and can be injected into application components. These requirements are based on annotations
defined in the Java Metadata specification and features defined in the Java Naming and Directory
Interface™ (JNDI) specification. The Resource annotation described here is defined in more detail in
the Jakarta Annotations specification. The EJB annotation described here is defined in more detail
in the Enterprise JavaBeans specification. The PersistenceUnit and PersistenceContext annotations
described here are defined in more detail in the Jakarta Persistence specification. The Inject
annotation described here is defined in the Dependency Injection for Java specification, and its
usage in Jakarta EE applications is defined in the CDI specification.

5.1. Overview
The requirements defined in this chapter address the following two issues:

• The Application Assembler and Deployer should be able to customize the behavior of an
application’s business logic without accessing the application’s source code. Typically this will
involve specification of parameter values, connection to external resources, and so on.
Deployment descriptors provide this capability

• Applications must be able to access resources and external information in their operational
environment without knowledge of how the external information is named and organized in
that environment. The JNDI naming context and Java language annotations provide this
capability.

5.1.1. Chapter Organization

The following sections contain the Jakarta EE platform solutions to the above issues:

• JNDI Naming Context defines general rules for the use of the JNDI naming context and its
interaction with Java language annotations that reference entries in the naming context.

• Responsibilities by Jakarta EE Role defines the general responsibilities for each of the Jakarta EE
roles such as Application Component Provider, Application Assembler, Deployer, and Jakarta EE
Product Provider.

• Simple Environment Entries defines the basic interfaces that specify and access the application
component’s naming environment. The section illustrates the use of the application
component’s naming environment for generic customization of the application component’s
business logic.

• Jakarta Enterprise Beans References defines the interfaces for obtaining the business interface,
no-interface view, or home interface of an enterprise bean using a Jakarta Enterprise Bean
reference. A Jakarta Enterprise Bean reference is a special entry in the application component’s
environment.

• Web Service References refers to the specification for web service references.

• Resource Manager Connection Factory References defines the interfaces for obtaining a

54

resource manager connection factory using a resource manager connection factory reference. A
resource manager connection factory reference is a special entry in the application
component’s environment.

• Resource Environment References defines the interfaces for obtaining an administered object
that is associated with a resource using a resource environment reference. A resource
environment reference is a special entry in the application component’s environment.

• Message Destination References defines the interfaces for declaring and using message
destination references.

• UserTransaction References describes the use by eligible application components of references
to a UserTransaction object in the component’s environment to start, commit, and abort
transactions.

• TransactionSynchronizationRegistry References describes the use by eligible application
components of references to a TransactionSynchronizationRegistry object in the component’s
environment.

• ORB References describes the use by eligible application components of references to a CORBA
ORB object in the component’s environment.

• Persistence Unit References describes the use by eligible application components of references
to an EntityManagerFactory object in the component’s environment.

• Persistence Context References describes the use by eligible application components of
references to an EntityManager object in the component’s environment.

• Application Name and Module Name References describes the use by eligible application
components of references to the names of the current application and module.

• Application Client Container Property describes the use by eligible application components of
references to the application client container property.

• Validator and Validator Factory References describes the use by eligible application components
of references to the Validator and ValidatorFactory objects in the component’s environment.

• Resource Definition and Configuration describes the use by eligible application components of
metadata that may be used to define resources in the component’s environment.

• DataSource Resource Definition describes the use by eligible application components of
references to DataSource resources in the component’s environment.

• Jakarta Messaging Connection Factory Resource Definition describes the use by eligible
application components of references to Jakarta Messaging ConnectionFactory resources in the
component’s environment.

• Jakarta Messaging Destination Definition describes the use by eligible application components
of references to Jakarta Messaging Destination resources in the component’s environment.

• Mail Session Definition describes the use by eligible application components of references to
Mail Session resources in the component’s environment.

• Connector Connection Factory Definition describes the use by eligible application components
of references to Connector connection factory resources in the component’s environment.

• Connector Administered Object Definition describes the use by eligible application components
of references to Connector administered object resources in the component’s environment.

55

• Default Data Source describes the use by eligible application components of references to the
default DataSource in the component’s environment.

• Default Jakarta Messaging Connection Factory describes the use by eligible application
components of references to the default Jakarta Messaging ConnectionFactory in the
component’s environment.

• Default Jakarta Concurrency Objects describes the use by eligible application components of
references to the default Jakarta Concurrency objects in the component’s environment.

• Managed Bean References describes the use by eligible application components of references to
CDI Managed Beans.

• Bean Manager References describes the use by eligible application components of references to
a BeanManager object in the component’s environment.

• Support for Dependency Injection describes support for the use of the Dependency Injection
APIs.

5.1.2. Required Access to the JNDI Naming Environment

Jakarta EE application clients, enterprise beans, and web components are required to have access
to a JNDI naming environment.[1] The containers for these application component types are
required to provide the naming environment support described here.

Annotations and deployment descriptors are the main vehicles for conveying access information to
the Application Assembler and Deployer about application components’ requirements for
customization of business logic and access to external information. The annotations described here
are available for use by all application component types. The deployment descriptor entries
described here are present in identical form in the deployment descriptor schemas for each of
these application component types. See the corresponding specification of each application
component type for the details.

5.2. JNDI Naming Context
The application component’s naming environment is a mechanism that allows customization of the
application component’s business logic during deployment or assembly. Use of the application
component’s environment allows the application component to be customized without the need to
access or change the application component’s source code.

5.2.1. The Application Component’s Environment

The container implements the application component’s environment, and provides it to the
application component instance as a JNDI naming context. The application component’s
environment is used as follows:

1. The application component’s business methods make use of entries from the environment. The
business methods may access the environment using the JNDI interfaces or lookup methods on
component-specific context objects. Also, entries from the environment may be injected into the
application component’s fields or methods. The Application Component Provider declares in the
deployment descriptor, or via annotations, all the environment entries that the application

56

component expects to be provided in its environment at runtime. For each environment entry,
the Application Component Provider can also specify in the deployment descriptor, or via
annotations, the JNDI name of another environment entry whose value should be used to
initialize the environment entry being defined (“lookup” functionality).

2. The container provides an implementation of the JNDI naming context that stores the
application component environment. The container also provides the tools that allow the
Deployer to create and manage the environment of each application component.

3. The Deployer uses the tools provided by the container to initialize the environment entries that
are declared in the application component’s deployment descriptor or via annotations. The
Deployer can set and modify the values of the environment entries. As part of this process, the
Deployer is allowed to override any “lookup” information associated with the application
component.

4. The container injects entries from the environment into application component fields or
methods as specified by the application component’s deployment descriptor or by annotations
on the application component class.

5. The container also makes the environment naming context available to the application
component instances at runtime. The application component’s instances may use the JNDI
interfaces or component context lookup methods to obtain the values of the environment
entries.

5.2.2. Application Component Environment Namespaces

The application component’s naming environment is composed of four logical namespaces,
representing naming environments with different scopes. The four namespaces are:

• java:comp – Names in this namespace are per-component (for example, per enterprise bean).
Except for components in a web module, each component gets its own java:comp namespace,
not shared with any other component. Components in a web module do not have their own
private component namespace. See note below.

• java:module – Names in this namespace are shared by all components in a module (for example,
all enterprise beans in a single enterprise bean module, or all components in a web module).

• java:app – Names in this namespace are shared by all components in all modules in a single
application, where “single application” means a single deployment unit, such as a single ear file,
a single module deployed standalone, etc. For example, a war file and a Jakarta Enterprise
Beans jar file in the same ear file would both have access to resources in the java:app
namespace.

• java:global – Names in this namespace are shared by all applications deployed in an application
server instance. Note that an application server instance may represent a single server, a cluster
of servers, an administrative domain containing many servers, or even more. The scope of an
application server instance is product-dependent, but it must be possible to deploy multiple
applications to a single application server instance.

Note that in environments in which an application is deployed multiple times—such as, for
example, in cloud environments, where multiple instances of the same application might be
deployed on behalf of multiple tenants—the namespace for each application instance would be
disjoint from the namespace of any other instance of that same application.

57

For historical reasons, the java:comp namespace is shared by all components in a web module. To
preserve compatibility, this specification doesn’t change that. In a web module, java:comp refers to
the same namespace as java:module. It is recommended that resources in a web module that are
intended to be shared by more than one component be declared in the java:module/env namespace.

Note that an application client is a module with only a single component.

Note also that resource adapter (connector) modules may not define resources in any of the
component namespaces, but may look up resources defined by other components. All the java:
namespaces accessible in a resource adapter are the namespaces of the component that called the
resource adapter (when called in the context of a component).

If multiple application components declare an environment entry in one of the shared namespaces,
all attributes of that entry must be identical in each declaration. For example, if multiple
components declare a resource reference with the same java:app name, the authentication and
shareable attributes must be identical.

If all attributes of each declaration of a shared environment entry are not identical, this must be
reported as a deployment error to the Deployer. The deployment tool may allow the Deployer to
correct the error and continue deployment.

The default JNDI namespace for resource references and resource definitions must always be
java:comp/env. Note that this applies to both the case where no name has been supplied so the rules
for choosing a default name are used, and the case where a name has been supplied explicitly but
the name does not specify a java: namespace. Since the java:comp namespace is not available in
some contexts, use of that namespace in such a context should result in a deployment error.
Likewise, the java:module namespace is not valid in some contexts; use of that namespace in such
contexts should result in a deployment error. Environment entries may be declared in any one of
the defined namespaces by explicitly including the namespace prefix before the name.

It is recommended but not required that environment entries be created in the env subcontext of
the corresponding naming context. For example, entries shared within a module should be
declared in the java:module/env context. Note that names that are not under the env subcontext
may conflict with the current or future versions of this specification, with server-defined names,
such as the names of applications or modules, or with server-defined resources. Names in the env
subcontexts of any of the namespaces must only be created by an explicit declaration in an
application or by an explicit action by an administrator; the application server must not predefine
any names in the env subcontext of any of the namespaces, or in any subcontext of any such env
context.

An environment entry declared in the application.xml descriptor must specify a JNDI name in the
java:app or java:global namespace, for example: java:app/env/myString or java:global/someValue.
The specification of a java:comp or java:module name for an environment entry declared in the
application.xml descriptor must be reported as a deployment error to the Deployer.

A Jakarta EE product may impose security restrictions on access of resources in the shared
namespaces. However, it must be possible to deploy applications that define resources in the
shared namespaces that are usable by different entities at the given scope. For example, it must be
possible to deploy an application that defines a resource, using various forms of metadata

58

declaration, in the java:global namespace that is usable by a separate application.

5.2.3. Accessibility of Environment Entry Types

All objects defined in environment entries of any kind (either in deployment descriptors or through
annotations) must be specified to be of a Java type that is accessible to the component. Accessibility
of Java classes is specified in section Class Loading Requirements. If the object is of type
java.lang.Class, the Class object must refer to a class that is accessible to the component. Note that
in cases where the container may return an implementation subtype of the requested type, the
implementation subtype might not be accessible to the component.

5.2.4. Sharing of Environment Entries

Each application component defines its own set of dependencies that must appear as entries in the
application component’s environment. All instances of an application component within the same
application instance within the same container share the same environment entries. Application
component instances are not allowed to modify the environment at runtime.

In general, lookups of objects in the JNDI java: namespace are required to return a new instance of
the requested object every time. Exceptions are allowed for the following:

• The container knows the object is immutable (for example, objects of type java.lang.String), or
knows that the application can’t change the state of the object.

• The object is defined to be a singleton, such that only one instance of the object may exist in the
JVM.

• The name used for the lookup is defined to return an instance of the object that might be
shared. The names java:comp/ORB, java:comp/ValidatorFactory, and java:comp/BeanManager
are such names.

In these cases, a shared instance of the object may be returned. In all other cases, a new instance of
the requested object must be returned on each lookup. Note that, in the case of resource adapter
connection objects, it is the resource adapter’s ManagedConnectionFactory implementation that is
responsible for satisfying this requirement.

Each injection of an object corresponds to a JNDI lookup. Whether a new instance of the requested
object is injected, or whether a shared instance is injected, is determined by the rules described
above.

5.2.5. Annotations and Injection

As described in the following sections, a field or method of certain container-managed component
classes may be annotated to request that an entry from the application component’s environment
be injected into the class. The specifications for the different containers indicate which classes are
considered container-managed classes; not all classes of a given type are necessarily managed by
the container.

Any of the types of resources described in this chapter may be injected. Injection may also be
requested using entries in the deployment descriptor corresponding to each of these resource

59

types. The field or method may have any access qualifier (public, private, etc.). For all classes except
application client main classes, the fields or methods must not be static. Because application clients
use the same lifecycle as Java SE applications, no instance of the application client main class is
created by the application client container. Instead, the static main method is invoked. To support
injection for the application client main class, the fields or methods annotated for injection must be
static.

A field of a class may be the target of injection. The field must not be final. By default, the name of
the field is combined with the fully qualified name of the class and used directly as the name in the
application component’s naming context. For example, a field named myDatabase in the class
MyApp in the package com.example would correspond to the JNDI name
java:comp/env/com.example.MyApp/myDatabase. The annotation also allows the JNDI name to be
specified explicitly. When a deployment descriptor entry is used to specify injection, the JNDI name
and the field name are both specified explicitly. Note that, by default, the JNDI name is relative to
the java:comp/env naming context.

Environment entries may also be injected into a class through methods that follow the naming
conventions for JavaBeans properties. The annotation is applied to the set method for the property,
which is the method that is called to inject the environment entry into the class. The JavaBeans
property name (not the method name) is used as the default JNDI name. For example, a method
named setMyDatabase in the same MyApp class would correspond to the same JNDI name
java:comp/env/com.example.MyApp/myDatabase as the field myDatabase.

Each resource may only be injected into a single field or method of a given name in a given class.
Requesting injection of the java:comp/env/com.example.MyApp/myDatabase resource into both the
setMyDatabase method and the myDatabase field is an error. Note, however, that either the field or
the method could request injection of a resource of a different (non-default) name. By explicitly
specifying the JNDI name of a resource, a single resource may be injected into multiple fields or
methods of multiple classes.

The specifications for the various application component types describe which classes may be
annotated for injection, as summarized in Component classes supporting injection.

The component classes listed in Component classes supporting injection with support level
“Standard” all support Jakarta EE resource injection, as well as PostConstruct and PreDestroy
callbacks. In addition, if CDI is enabled—which it is by default—these classes also support CDI
injection, as described in Support for Dependency Injection, and the use of interceptors.[2] The
component classes listed with support level “Limited” only support Jakarta EE field injection and
the PostConstruct callback. Note that these are application client main classes, where field injection
is into static fields.

The specifications for the various application component types also describe when injection occurs
in the lifecycle of the component. Typically injection will occur after an instance of the class is
constructed, but before any business methods are called. If the container fails to find a resource
needed for injection, initialization of the class must fail, and the class must not be put into service.

Table 1. Component classes supporting injection

60

Spec Classes supporting injection Support level

Servlet servlets

servlet filters

event listeners

HTTP upgrade handlers

Standard

Standard

Standard

Standard

Jakarta Server Pages tag handlers

tag library event listeners

Standard

Standard

Jakarta Server Faces managed classes [3] Standard

Jakarta Web Services service endpoints

handlers

Standard

Standard

Jakarta RESTful Web Services Jakarta RESTful Web Services
components [4]

Standard

WebSocket endpoints Standard

Jakarta Enterprise Beans beans Standard

Interceptor interceptors [5] Standard

Jakarta Persistence attribute converters

entity listeners

Standard

Standard

Managed Beans managed beans Standard

CDI [6] CDI-style managed beans [7]

decorators [8]

Standard

Standard

Jakarta EE platform main class (static)

login callback handler

Limited

Standard

Annotations may also be applied to the class itself. These annotations declare an entry in the
application component’s environment but do not cause the resource to be injected. Instead, the
application component is expected to use JNDI or a component context lookup method to lookup
the entry. When the annotation is applied to the class, the JNDI name and the environment entry
type must be specified explicitly.

Resource annotations may appear on any of the classes listed above, or on any superclass of any
class listed above. A resource annotation on any class in the inheritance hierarchy defines a
resource needed by the application component. However, injection of resources follows the Java
language overriding rules for visibility of fields and methods. A method definition that overrides a
method on a superclass defines the resource, if any, to be injected into that method. An overriding
method may request injection even though the superclass method does not request injection, it may

61

request injection of a different resource than is requested by the superclass, or it may request no
injection even though the superclass method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed to overridden) by a
subclass may still request injection. This allows, for example, a private field to be the target of
injection and that field to be used in the implementation of the superclass, even though the subclass
has no visibility into that field and doesn’t know that the implementation of the superclass is using
an injected resource. Note a declaration of a field in a subclass with the same name as a field in a
superclass always causes the field in the superclass to be hidden.

In some cases a class may need to perform initialization of its own after all resources have been
injected. To support this case, one method of the class may be annotated with the PostConstruct
annotation (or, equivalently, specified using the post-construct entry of a deployment descriptor).
This method will be called after all injections have occured and before the class is put into service.
This method will be called even if the class doesn’t request any resources to be injected. Similarly,
for classes whose lifecycle is managed by the container, the PreDestroy annotation (or, equivalently,
the pre-destroy entry of a deployment descriptor) may be applied to one method that will be called
when the class is taken out of service and will no longer be used by the container. Each class in a
class hierarchy may have PostConstruct and PreDestroy methods. The order in which the methods
are called matches the order of the class hierarchy with methods on a superclass being called
before methods on a subclass.

The PostConstruct and PreDestroy annotations are specified by the Jakarta Annotations
specification. All classes that support injection also support the PostConstruct annotation. All
classes for which the container manages the full lifecycle of the object also support the PreDestroy
annotation.

Starting with Java EE 7, CDI support is enabled by default. CDI bean-defining annotations and the
beans.xml descriptor are used to determine which classes are CDI beans and eligible for injection
into other objects. Similarly, the annotation metadata and the beans.xml descriptor are used by CDI
to determine which interceptors are eligible to be applied. See the CDI specification and the
Interceptors specification for the rules that determine which classes are CDI beans and the
treatment of interceptors.

5.2.6. Annotations and Deployment Descriptors

Environment entries may be declared by use of annotations, without need for any deployment
descriptor entries. Environment entries may also be declared by deployment descriptor entries. The
same environment entry may be declared using both an annotation and a deployment descriptor
entry. In this case, the information in the deployment descriptor entry may be used to override
some of the information provided in the annotation. This approach may be used by an Application
Assembler or Deployer to override information provided by the Application Component Developer.
Applications should not use deployment descriptor entries to request injection of a resource into a
field or method that has not been designed for injection.

The following list describes the rules for how a deployment descriptor entry may override a
Resource annotation.

• The relevant deployment descriptor entry is located based on the JNDI name used with the

62

annotation (either defaulted or provided explicitly).

• The type specified in the deployment descriptor must be assignable to the type of the field or
property.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, defines additional injection points for the resource.

• The mapped-name element, if specified, overrides the mappedName element of the annotation.

• The res-sharing-scope element, if specified, overrides the shareable element of the annotation.
In general, the Application Assembler or Deployer should not change this value as doing so is
likely to break the application.

• The res-auth element, if specified, overrides the authenticationType element of the annotation.
In general, the Application Assembler or Deployer should not change this value as doing so is
likely to break the application.

• The lookup-name element, if specified, overrides the lookup element of the annotation.

It is an error to request injection of two resources into the same target. The behavior of an
application that does so is undefined.

The rules for how a deployment descriptor entry may override an EJB annotation are included in
the Jakarta Enterprise Beans specification. The rules for how a deployment descriptor entry may
override a WebServiceRef annotation are included in the Web Services for Jakarta EE specification.

A PostConstruct method may be specified using either the PostConstruct annotation on the method
or the post-construct deployment descriptor entry. Similarly, a PreDestroy method may be specified
using either the PreDestroy annotation on the method or the pre-destroy deployment descriptor
entry.

5.2.7. Other Naming Context Entries

In addition to environment entries declared by application components, other items will appear in
the naming context, as specified by this and other specifications. Following are some of these
entries. This is not an exhaustive list; consult the corresponding specification for details.

• All enterprise beans in an application are given entries in the shared namespaces. See the
Jakarta Enterprise Beans specification for details.

• All web applications are given names in the shared namespaces. The names correspond to the
complete URL of the web application. See the Servlet specification for details.

• Objects representing several container services are defined in the java:comp namespace. See,
for example, UserTransaction References, TransactionSynchronizationRegistry References, and
ORB References.

• Strings providing the current module name and application name are defined in the java:comp
namespace. See Application Name and Module Name References.

63

5.3. Responsibilities by Jakarta EE Role
This section describes the responsibilities for each Jakarta EE role that apply to all uses of the
Jakarta EE naming context. The sections that follow describe the responsibilities that are specific to
the different types of objects that may be stored in the naming context.

5.3.1. Application Component Provider’s Responsibilities

The Application Component Provider may make use of three techniques for accessing and
managing the naming context. First, the Application Component Provider may use Java language
annotations to request injection of a resource from the naming context, or to declare elements that
are needed in the naming context. Second, the component may use the JNDI APIs to access entries
in the naming context. Third, deployment descriptor entries may be used to declare entries needed
in the naming context, and to request injection of these entries into application components.
Deployment descriptor entries may also be used to override information provided by annotations.

As part of the declaration of elements in the naming context, the Application Component Provider
can specify the JNDI name of a resource to be looked up in the naming context to initialize the
element being declared. The JNDI name in question may belong to any of the namespaces that
compose the application component environment.

To ensure that it has access to the correct javax.naming.InitialContext implementation provided by
the container, a portable application component must not specify the java.naming.factory.initial
property, must not specify a URLContextFactory for the “java” scheme-id, and must not call the
javax.naming.spi.NamingManager.setInitialContextFactoryBuilder method.

5.3.2. Application Assembler’s Responsibilities

The Application Assembler is allowed to modify the entries in the naming context set by the
Application Component Provider, and is allowed to set the values of those entries for which the
Application Component Provider has not specified any values. The Application Assembler may use
the deployment descriptor to override settings made by the Application Component Provider in the
source code using annotations.

5.3.3. Deployer’s Responsibilities

The Deployer must ensure that all the entries declared by an application component are created
and properly initialized.

The Deployer can modify the entries that have been previously set by the Application Component
Provider and/or Application Assembler, and must set the values of those entries for which a
required value has not been specified. If an annotation contains the lookup element or a
deployment descriptor entry includes the lookup-name element, the Deployer should bind it to the
entry specified as the target of the lookup. Deployment should fail if the lookup element of an
annotation or the lookup-name element in a deployment descriptor entry does not specify a name
with an explicit java: namespace. The Deployer may also use product-specific resource mapping
tools, deployment descriptors, rules, or capabilities to bind resource reference entries to resources
in the target operational environment.

64

The description deployment descriptor elements and annotation elements provided by the
Application Component Provider or Application Assembler help the Deployer with this task.

5.3.4. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the entries of the
application component’s naming context.

• Implement the java:comp, java:module, java:app, and java:global environment naming contexts,
and provide them to the application component instances at runtime. The naming context must
include all the entries declared by the Application Component Provider, with their values
supplied in the deployment descriptor or set by the Deployer. The environment naming context
must allow the Deployer to create subcontexts if they are needed by an application component.
Certain entries in the naming context may have to be initialized with the values of other entries,
specifically when the “lookup” facility is used. In this case, it is an error if there are any circular
dependencies between entries. Similarly, it is an error if looking up the specified JNDI name
results in a resource whose type is not compatible with the entry being created. The deployment
tool may allow the deployer to correct either of these classes of errors and continue the
deployment.

• Ensure that, in the absence of any properties specified by the application, the
javax.naming.InitialContext implementation meets the requirements described in this
specification.

• Inject entries from the naming environment into the application component, as specified by the
deployment descriptor or annotations on the application component classes.

• The container must ensure that the application component instances have only read access to
their naming context. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the
javax.naming.Context interface that modify the environment naming context and its
subcontexts.

5.4. Simple Environment Entries
A simple environment entry is a configuration parameter used to customize an application
component’s business logic. The environment entry values may be one of the following Java types:
String, Character, Byte, Short, Integer, Long, Boolean, Double, Float, Class, and any subclass of Enum.

The following subsections describe the responsibilities of each Jakarta EE Role.

5.4.1. Application Component Provider’s Responsibilities

This section describes the Application Component Provider’s view of the application component’s
environment, and defines his or her responsibilities. It does so in three sections, the first describing
annotations for injecting environment entries, the second describing the API for accessing
environment entries, and the third describing syntax for declaring the environment entries in a
deployment descriptor.

65

5.4.1.1. Injection of Simple Environment Entries

A field or a method of an application component may be annotated with the Resource annotation.
The name and type of the environment entry are as described above. Note that the container will
unbox the environment entry as required to match it to a primitive type used for the injection field
or method. The authenticationType and shareable elements of the Resource annotation must not be
specified; simple environment entries are not shareable and do not require authentication.

The following code example illustrates how an application component uses annotations to declare
environment entries.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions;
// The minimum number of tax exemptions, configured by the Deployer.
@Resource int minExemptions;

public void setTaxInfo(int numberOfExemptions,...)
 throws InvalidNumberOfExemptionsException {
 ...
 // Use the environment entries to
 // customize business logic.
 if (numberOfExemptions > maxExemptions ||
 numberOfExemptions < minExemptions)
 throw new InvalidNumberOfExemptionsException();
 ...
}

The following code example illustrates how an environment entry can be assigned a value by
referring to another entry, potentially in a different namespace.

// an entry that gets its value from an application-wide entry
@Resource(lookup="java:app/env/timeout") int timeout;

5.4.1.2. Programming Interfaces for Accessing Simple Environment Entries

In addition to the injection based approach described above, an application component may access
environment entries dynamically. An application component instance locates the environment
naming context using the JNDI interfaces. An instance creates a javax.naming.InitialContext object
by using the constructor with no arguments, and looks up the naming environment via the
InitialContext under the name java:comp/env. The application component’s environment entries are
stored directly in the environment naming context, or in its direct or indirect subcontexts.

Environment entries have the Java programming language type declared by the Application
Component Provider in the deployment descriptor.

The following code example illustrates how an application component accesses its environment
entries.

66

public void setTaxInfo(int numberOfExemptions,...)
 throws InvalidNumberOfExemptionsException {
 ...
 // Obtain the application component’s
 // environment naming context.
 Context initCtx = new InitialContext();
 Context myEnv = (Context)initCtx.lookup("java:comp/env");

 // Obtain the maximum number of tax exemptions
 // configured by the Deployer.
 Integer max = (Integer)myEnv.lookup("maxExemptions");

 // Obtain the minimum number of tax exemptions
 // configured by the Deployer.
 Integer min = (Integer)myEnv.lookup("minExemptions");

 // Use the environment entries to
 // customize business logic.
 if (numberOfExemptions > max.intValue() ||
 numberOfExemptions < min.intValue())
 throw new InvalidNumberOfExemptionsException();

 // Get some more environment entries. These environment
 // entries are stored in subcontexts.
 String val1 = (String)myEnv.lookup("foo/name1");
 Boolean val2 = (Boolean)myEnv.lookup("foo/bar/name2");

 // The application component can also
 // lookup using full pathnames.
 Integer val3 = (Integer)initCtx.lookup("java:comp/env/name3");
 Integer val4 = (Integer)initCtx.lookup("java:comp/env/foo/name4");
 ...
}

5.4.1.3. Declaration of Simple Environment Entries

The Application Component Provider must declare all the environment entries accessed from the
application component’s code. The environment entries are declared using either annotations on
the application component’s code, or using the env-entry elements in the deployment descriptor.
Each env-entry element describes a single environment entry. The env-entry element consists of an
optional description of the environment entry, the environment entry name, which by default is
relative to the java:comp/env context, the expected Java programming language type of the
environment entry value (the type of the object returned from the JNDI lookup method), and an
optional environment entry value.

An environment entry is scoped to the application component whose declaration contains the env-
entry element. This means that the environment entry is not accessible from other application
components at runtime, and that other application components may define env-entry elements with
the same env-entry-name without causing a name conflict.

67

If the Application Component Provider provides a value for an environment entry using the env-
entry-value element, the value can be changed later by the Application Assembler or Deployer. The
value must be a string that is valid for the constructor of the specified type that takes a single String
parameter, or in the case of Character, a single character.

The following example is the declaration of environment entries used by the application
component whose code was illustrated in the previous subsection.

...
<env-entry>
 <description>
 The maximum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>maxExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
</env-entry>
<env-entry>
 <description>
 The minimum number of tax exemptions allowed to
 be set.
 </description>
 <env-entry-name>minExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>foo/name1</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>value1</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>foo/bar/name2</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>true</env-entry-value>
</env-entry>
<env-entry>
 <description>Some description.</description>
 <env-entry-name>name3</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
</env-entry>
<env-entry>
 <env-entry-name>foo/name4</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>10</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>helperClass</env-entry-name>
 <env-entry-type>java.lang.Class</env-entry-type>

68

 <env-entry-value>com.acme.helper.Helper</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>timeUnit</env-entry-name>
 <env-entry-type>java.util.concurrent.TimeUnit</env-entry-type>
 <env-entry-value>NANOSECONDS</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>bar</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <lookup-name>java:app/env/appBar</lookup-name>
</env-entry>
...

Injection of environment entries may also be specified using the deployment descriptor, without
need for Java language annotations. The following example is the declaration of environment
entries corresponding to the earlier injection example.

...
<env-entry>
 <description>
 The maximum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>
 com.example.PayrollService/maxExemptions
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
 <injection-target>
 <injection-target-class>
 com.example.PayrollService
 </injection-target-class>
 <injection-target-name>
 maxExemptions
 </injection-target-name>
 </injection-target>
</env-entry>
<env-entry>
 <description>
 The minimum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>
 com.example.PayrollService/minExemptions
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
 <injection-target>
 <injection-target-class>

69

 com.example.PayrollService
 </injection-target-class>
 <injection-target-name>
 minExemptions
 </injection-target-name>
 </injection-target>
</env-entry>
...

It’s often convenient to declare a field or method as an injection target, but specify a default value
in the code, as illustrated in the following example.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions = 4; // defaults to 4

To support this case, the container must only inject a value for this resource if the deployer has
specified a value to override the default value. The env-entry-value element in the deployment
descriptor is optional when an injection target is specified. If the element is not specified, no value
will be injected. In addition, if the element is not specified, the named resource is not initialized in
the naming context; explicit lookups of the named resource will fail.

The deployment descriptor equivalent of the lookup element of the @Resource annotation is lookup-
name. The following deployment descriptor fragment is equivalent to the earlier example that used
lookup.

...
<env-entry>
 <env-entry-name>somePackage.SomeClass/timeout</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <injection-target>
 <injection-target-class>
 somePackage.SomeClass
 </injection-target-class>
 <injection-target-name>timeout</injection-target-name>
 </injection-target>
 <lookup-name>java:app/env/timeout</lookup-name>
</env-entry>
...

It is an error for both the env-entry-value and lookup-name elements to be specified for a given env-
entry element. If either element exists, an eventual lookup element of the corresponding Resource
annotation (if any) must be ignored. In other words, assignment of a value to an environment entry
via a deployment descriptor, either directly (env-entry-value) or indirectly (lookup-name),
overrides any assignments made via annotations.

70

5.5. Jakarta Enterprise Beans References
This section describes the programming and deployment descriptor interfaces that allow the
Application Component Provider to refer to the homes of enterprise beans or to enterprise bean
instances using “logical” names called Jakarta Enterprise Beans references. The Jakarta Enterprise
Beans references are special entries in the application component’s naming environment. The
Deployer binds the Jakarta Enterprise Beans reference to the enterprise bean’s business interface,
no-interface view, or home interface in the target operational environment.

The deployment descriptor also allows the Application Assembler to link a Jakarta Enterprise Bean
reference declared in one application component to an enterprise bean contained in an ejb-jar file
in the same Jakarta EE application. The link is an instruction to the tools used by the Deployer
describing the binding of the Jakarta Enterprise Beans reference to the business interface, no-
interface view, or home interface of the specified target enterprise bean. The same linking can also
be specified by the Application Component Provider using annotations in the source code of the
component.

The requirements in this section only apply to Jakarta EE products that include a Jakarta Enterprise
Beans container.

5.5.1. Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and responsibilities with
respect to Jakarta Enterprise Beans references. It does so in three sections, the first describing
annotations for injecting Jakarta Enterprise Beans references, the second describing the API for
accessing Jakarta Enterprise Beans references, and the third describing the syntax for declaring the
Jakarta Enterprise Beans references in a deployment descriptor

5.5.1.1. Injection of Jakarta Enterprise Beans Entries

A field or a method of an application component may be annotated with the EJB annotation. The
EJB annotation represents a reference to a Jakarta Enterprise Beans session bean or entity bean.
The reference may be to a session bean’s business interface, to a session bean’s no-interface view,
or to the local or remote home interface of a session bean or entity bean.

The following example illustrates how an application component uses the EJB annotation to
reference an instance of an enterprise bean. The referenced bean is a stateful session bean. The
enterprise bean reference will have the name java:comp/env/com.example.ExampleBean/myCart in
the naming context, where ExampleBean is the name of the class of the referencing bean and
com.acme.example is its package. The target of the reference is not named and must be resolved by
the Deployer, unless there is only one session bean component within the application that exposes
a client view type that matches the Jakarta Enterprise Bean reference.

package com.acme.example;

@Stateless public class ExampleBean implements Example {
 ...
 @EJB private ShoppingCart myCart;

71

 ...
}

The following example illustrates use of almost all elements of the EJB annotation.

@EJB(
 name = "ejb/shopping-cart",
 beanName = "cart1",
 beanInterface = ShoppingCart.class,
 description = "The shopping cart for this application"
)
private ShoppingCart myCart;

As an alternative to beanName, a reference to an enterprise bean can use the global JNDI name for
that enterprise bean, or any of the other names mandated by the Jakarta Enterprise Beans
specifications, by means of the lookup annotation element. The following example uses a JNDI
name in the application namespace.

@EJB(
 lookup="java:app/cartModule/ShoppingCart",
 description = "The shopping cart for this application"
)
private ShoppingCart myOtherCart;

If the ShoppingCart bean were instead written to the Jakarta Enterprise Beans 2.x client view, the
Jakarta Enterprise Bean reference would be to the bean’s home interface. For example:

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartHome.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCartHome myCartHome;

If the ShoppingCart bean were instead written to the no-interface client view and implemented by
bean class ShoppingCartBean.class, the Jakarta Enterprise Bean reference would have type
ShoppingCartBean.class. For example:

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartBean.class,
 beanName="cart1",
 description="The shopping cart for this application"
)

72

private ShoppingCartBean myCart;

5.5.1.2. Programming Interfaces for Jakarta Enterprise Beans References

The Application Component Provider may use Jakarta Enterprise Beans references to locate the
business interface, no-interface view, or home interface of an enterprise bean as follows.

• Assign an entry in the application component’s environment to the reference. (See subsection
Declaration of Jakarta Enterprise Beans References for information on how Jakarta Enterprise
Beans references are declared in the deployment descriptor.)

• This specification recommends, but does not require, that references to enterprise beans be
organized in the ejb subcontext of the application component’s environment (that is, in the
java:comp/env/ejb JNDI context). Note that enterprise bean references declared via annotations
will not, by default, be in any subcontext.

• Look up the business interface, no-interface view, or home interface of the referenced
enterprise bean in the application component’s environment using JNDI.

The following example illustrates how an application component uses a Jakarta Enterprise Bean
reference to locate the home interface of an enterprise bean.

public void changePhoneNumber(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the home interface of the EmployeeRecord
 // enterprise bean in the environment.
 Object result = initCtx.lookup("java:comp/env/ejb/EmplRecord");

 // Convert the result to the proper type.
 EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
 javax.rmi.PortableRemoteObject.narrow(result,
 EmployeeRecordHome.class);
 ...
}

In the example, the Application Component Provider assigned the environment entry
ejb/EmplRecord as the Jakarta Enterprise Bean reference name to refer to the remote home
interface of an enterprise bean.

5.5.1.3. Declaration of Jakarta Enterprise Beans References

Although the Jakarta Enterprise Bean reference is an entry in the application component’s
environment, the Application Component Provider must not use a env-entry element to declare it.
Instead, the Application Component Provider must declare all the Jakarta Enterprise Beans
references using either annotations on the application component’s code or the ejb-ref or ejb-local-
ref elements of the deployment descriptor. This allows the consumer of the application component’s

73

JAR file (the Application Assembler or Deployer) to discover all the Jakarta Enterprise Beans
references used by the application component. Deployment descriptor entries may also be used to
specify injection of a Jakarta Enterprise Bean reference into an application component.

Each ejb-ref or ejb-local-ref element describes the interface requirements that the referencing
application component has for the referenced enterprise bean. The ejb-ref element is used for
referencing an enterprise bean that is accessed through its remote business interface or remote
home and component interfaces. The ejb-local-ref element is used for referencing an enterprise
bean that is accessed through its local business interface, no-interface view, or local home and
component interfaces. The ejb-ref element contains a description element and the ejb-ref-name, ejb-
ref-type, home, and remote elements. The ejb-local-ref element contains a description element and
the ejb-ref-name, ejb-ref-type, local-home, and local elements

The ejb-ref-name element specifies the Jakarta Enterprise Bean reference name. Its value is the
environment entry name used in the application component code. The optional ejb-ref-type element
specifies the expected type of the enterprise bean. Its value must be either Entity or Session. The
home and remote or local-home and local elements specify the expected Java programming
language types of the referenced enterprise bean’s interface(s). If the reference is to a Jakarta
Enterprise Beans 2.x remote client view interface, the home element is required. Likewise, if the
reference is to a Jakarta Enterprise Beans 2.x local client view interface, the local-home element is
required. The remote element of the ejb-ref element refers to either the business interface type or
the component interface, depending on whether the reference is to a bean’s Jakarta Enterprise
Beans 3.x or Jakarta Enterprise Beans 2.x remote client view. Likewise, the local element of the ejb-
local-ref element refers to either the business interface type, bean class type, or the component
interface type, depending on whether the reference is to a bean’s Jakarta Enterprise Beans 3.x local
business interface, no-interface view, or Jakarta Enterprise Beans 2.x local client view respectively.

A Jakarta Enterprise Bean reference is scoped to the application component whose declaration
contains the ejb-ref or ejb-local-ref element. This means that the Jakarta Enterprise Bean reference
is not accessible from other application components at runtime and that other application
components may define ejb-ref or ejb-local-ref elements with the same ejb-ref-name without causing
a name conflict.

The lookup-name element specifies the JNDI name of an environment entry that provides a value
for the reference.

The following example illustrates the declaration of Jakarta Enterprise Beans references in the
deployment descriptor.

...
<ejb-ref>
 <description>
 This is a reference to the entity bean that
 encapsulates access to employee records.
 </description>
 <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>

74

</ejb-ref>

<ejb-ref>
 <ejb-ref-name>ejb/Payroll</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.aardvark.payroll.PayrollHome</home>
 <remote>com.aardvark.payroll.Payroll</remote>
</ejb-ref>

<ejb-ref>
 <ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.wombat.empl.PensionPlanHome</home>
 <remote>com.wombat.empl.PensionPlan</remote>
 <lookup-name>java:global/personnel/retirement/PensionPlan</lookup-name>
</ejb-ref>
...

5.5.2. Application Assembler’s Responsibilities

The Application Assembler can use the ejb-link element in the deployment descriptor to link a
Jakarta Enterprise Beans reference to a target enterprise bean.

The Application Assembler specifies the link to an enterprise bean as follows:

• The Application Assembler uses the optional ejb-link element of the ejb-ref or ejb-local-ref
element of the referencing application component. The value of the ejb-link element is the name
of the target enterprise bean. This is the name as defined by the metadata annotation (or
default) on the bean class or in the ejb-name element for the target enterprise bean. The target
enterprise bean can be in any ejb-jar file or war file in the same Jakarta EE application as the
referencing application component.

• Alternatively, to avoid the need to rename enterprise beans to have unique names within an
entire Jakarta EE application, the Application Assembler may use either of the following two
syntaxes in the ejb-link element of the referencing application component.

• The Application Assembler specifies the module name of the ejb-jar file or war file containing
the referenced enterprise bean and appends the ejb-name of the target bean separated by “/”.
The module name is the base name of the bundle with no filename extension, unless specified
in the deployment descriptor.

• The Application Assembler specifies the path name of the ejb-jar file containing the referenced
enterprise bean and appends the ejb-name of the target bean separated from the path name by “
”. The path name is relative to the referencing application component JAR file. In this manner,
multiple beans with the same ejb-name may be uniquely identified when the Application
Assembler cannot change _ejb-name_s.

• Alternatively to the use of ejb-link, the Application Assembler may use the lookup-name element
to reference the target enterprise bean component by means of one of its JNDI names. It is an
error for both ejb-link and lookup-name to appear inside an ejb-ref element.

• The Application Assembler must ensure that the target enterprise bean is type-compatible with

75

the declared Jakarta Enterprise Beans reference. This means that the target enterprise bean
must be of the type indicated in the ejb-ref-type element, if present, and that the business
interface, no-interface view, or home and remote interfaces of the target enterprise bean must
be Java type-compatible with the type declared in the Jakarta Enterprise Bean reference.

The following example illustrates the use of the ejb-link element in the deployment descriptor. The
enterprise bean reference should be satisfied by the bean named EmployeeRecord. The
EmployeeRecord enterprise bean may be packaged in the same module as the component making
this reference, or it may be packaged in another module within the same Jakarta EE application as
the component making this reference.

...
<ejb-ref>
 <description>
 This is a reference to the entity bean that
 encapsulates access to employee records. It
 has been linked to the entity bean named
 EmployeeRecord in this application.
 </description>
 <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 <ejb-link>EmployeeRecord</ejb-link>
</ejb-ref>
...

The following example illustrates using the ejb-link element to indicate an enterprise bean
reference to the ProductEJB enterprise bean that is in the same Jakarta EE application unit but in a
different ejb-jar file.

...
<ejb-ref>
 <description>
 This is a reference to the entity bean that
 encapsulates access to a product. It
 has been linked to the entity bean named
 ProductEJB in the product.jar file in this
 application.
 </description>
 <ejb-ref-name>ejb/Product</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.acme.products.ProductHome</home>
 <remote>com.acme.products.Product</remote>
 <ejb-link>../products/product.jar#ProductEJB</ejb-link>
</ejb-ref>
...

76

The following example illustrates using the ejb-link element to indicate an enterprise bean
reference to the ShoppingCart enterprise bean that is in the same Jakarta EE application unit but in
a different ejb-jar file. The reference was originally declared in the application component’s code
using an annotation. The Assembler provides only the link to the bean.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <ejb-link>../products/product.jar#ShoppingCart</ejb-link>
</ejb-ref>
...

The same effect can be obtained by using the lookup-name element instead, using an appropriate
JNDI name for the target bean.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <lookup-name>java:app/products/ShoppingCart</lookup-name>
</ejb-ref>
...

5.5.3. Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared Jakarta Enterprise Beans references are bound
to the business interfaces, no-interface views, or home interfaces of enterprise beans that exist
in the operational environment. The Deployer may use, for example, the JNDI LinkRef
mechanism to create a symbolic link to the actual JNDI name of the target enterprise bean.

• The Deployer must ensure that the target enterprise bean is type-compatible with the types
declared for the Jakarta Enterprise Bean reference. This means that the target enterprise bean
must be of the type indicated in the ejb-ref-type element or specified via the EJB annotation, and
that the business interface, no-interface view, or home and remote interfaces of the target
enterprise bean must be Java type-compatible with the type declared in the Jakarta Enterprise
Bean reference (if specified).

• If a Jakarta Enterprise Bean reference declaration includes the ejb-link element, the Deployer
should bind the enterprise bean reference to the enterprise bean specified as the link’s target. If
an EJB annotation includes the lookup element or the Jakarta Enterprise Beans reference
declaration includes the lookup-name element, the Deployer should bind the enterprise bean
reference to the enterprise bean specified as the target of the lookup. It is an error for a Jakarta
Enterprise Bean reference declaration to include both an ejb-link and a lookup-name element.

The following example illustrates the use of the lookup-name element to bind an ejb-ref to a target
enterprise bean in the operational environment. The reference was originally declared in the
bean’s code using an annotation. The target enterprise bean has ejb-name ShoppingCart and is

77

deployed in the stand-alone module products.jar.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <lookup-name>java:global/products/ShoppingCart</lookup-name>
</ejb-ref>
...

5.5.4. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider must provide the deployment tools that allow the Deployer to
perform the tasks described in the previous subsection. The deployment tools provided by the
Jakarta EE Product Provider must be able to process the information supplied in class file
annotations and in the ejb-ref and ejb-local-ref elements in the deployment descriptor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in annotations or in the ejb-link elements by
binding a Jakarta Enterprise Bean reference to the business interface, no-interface view, or
home interface of the specified target enterprise bean.

• Inform the Deployer of any unresolved Jakarta Enterprise Beans references, and allow him or
her to resolve a Jakarta Enterprise Bean reference by binding it to a specified compatible target
enterprise bean.

5.6. Web Service References
A web service reference is similar to an Jakarta Enterprise Bean reference, but is used to reference
a web service. Web service references are fully specified in the Web Service specification and the
Jakarta Web Service specification.

5.7. Resource Manager Connection Factory References
A resource manager connection factory is an object that is used to create connections to a resource
manager. For example, an object that implements the javax.sql.DataSource interface is a resource
manager connection factory for java.sql.Connection objects that implement connections to a
database management system.

This section describes the application component programming and deployment descriptor
interfaces that allow the application component code to refer to resource factories using logical
names called resource manager connection factory references. The resource manager connection
factory references are special entries in the application component’s environment. The Deployer
binds the resource manager connection factory references to the actual resource manager
connection factories that exist in the target operational environment. Because these resource
manager connection factories allow the Container to affect resource management, the connections
acquired through the resource manager connection factory references are called managed
resources (for example, these resource manager connection factories allow the Container to

78

implement connection pooling and automatic enlistment of the connection with a transaction).

Resource manager connection factory objects accessed through the naming environment are only
valid within the component instance that performed the lookup. See the individual component
specifications for additional restrictions that may apply.

5.7.1. Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating resource factories
and defines his or her responsibilities. It does so in three sections, the first describing the
annotations used to inject resource manager connection factory references, the second describing
the API for accessing resource manager connection factory references, and the third describing the
syntax for declaring the factory references in a deployment descriptor

5.7.1.1. Injection of Resource Manager Connection Factory References

A field or a method of an application component may be annotated with the Resource annotation.
The name and type of the factory are as described above. The authenticationType and shareable
elements of the Resource annotation may be used to control the type of authentication desired for
the resource and the shareability of connection acquired from the factory, as described in the
following sections.

The following code example illustrates how an application component uses annotations to declare
resource manager connection factory references.

// The employee database.
@Resource javax.sql.DataSource employeeAppDB;

public void changePhoneNumber(...) {
 ...
 // Invoke factory to obtain a resource. The security
 // principal for the resource is not given, and
 // therefore it will be configured by the Deployer.
 java.sql.Connection con = employeeAppDB.getConnection();
 ...
}

It is possible to specify as part of the @Resource annotation the JNDI name of an entry to which the
resource being defined will be bound.

// The customer database, looked up in the application environment.
@Resource(lookup="java:app/env/customerDB")
javax.sql.DataSource customerAppDB;

The data source object being looked up in the previous example may have been declared as follows.

@Resource(name="java:app/env/customerDB",

79

 type=javax.sql.DataSource.class)
public class AnApplicationClass {
 ...
}

From a practical standpoint, declaring a commonly used data source at the application level and
referring to it using lookup from multiple components may simplify the task of deploying the
application, since now the Deployer will have to perform a single binding operation for the
application-level resource, instead of multiple ones. The task can be further simplified by using a
data source resource definition, see DataSource Resource Definition. Of course, nothing prevents
the Deployer from separately binding each data source reference if necessary.

5.7.1.2. Programming Interfaces for Resource Manager Connection Factory References

The Application Component Provider may use resource manager connection factory references to
obtain connections to resources as follows.

• Assign an entry in the application component’s naming environment to the resource manager
connection factory reference. (See subsection Declaration of Resource Manager Connection
Factory References in Deployment Descriptor for information on how resource manager
connection factory references are declared in the deployment descriptor.)

• This specification recommends, but does not require, that all resource manager connection
factory references be organized in the subcontexts of the application component’s environment,
using a different subcontext for each resource manager type. For example, all JDBC™
DataSource references should be declared in the java:comp/env/jdbc subcontext, all Jakarta
Messaging connection factories in the java:comp/env/jms subcontext, all Jakarta Mail connection
factories in the java:comp/env/mail subcontext, and all URL connection factories in the
java:comp/env/url subcontext. Note that resource manager connection factory references
declared via annotations will not, by default, appear in any subcontext.

• Look up the resource manager connection factory object in the application component’s
environment using the JNDI interface.

• Invoke the appropriate method on the resource manager connection factory object to obtain a
connection to the resource. The factory method is specific to the resource type. It is possible to
obtain multiple connections by calling the factory object multiple times.

The Application Component Provider can control the shareability of the connections acquired from
the resource manager connection factory. By default, connections to a resource manager are
shareable across other application components in the application that use the same resource in the
same transaction context. The Application Component Provider can specify that connections
obtained from a resource manager connection factory reference are not shareable by specifying
the value of the shareable annotation element to false or the res-sharing-scope deployment
descriptor element to be Unshareable. The sharing of connections to a resource manager allows the
container to optimize the use of connections and enables the container’s use of local transaction
optimizations.

The Application Component Provider has two choices with respect to dealing with associating a
principal with the resource manager access:

80

• Allow the Deployer to set up principal mapping or resource manager sign on information. In
this case, the application component code invokes a resource manager connection factory
method that has no security-related parameters.

• Sign on to the resource from the application component code. In this case, the application
component invokes the appropriate resource manager connection factory method that takes the
sign on information as method parameters.

The Application Component Provider uses the authenticationType annotation element or the res-
auth deployment descriptor element to indicate which of the two resource authentication
approaches is used.

We expect that the first form (that is letting the Deployer set up the resource sign on information)
will be the approach used by most application components.

The following code sample illustrates obtaining a JDBC connection.

public void changePhoneNumber(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain resource manager
 // connection factory
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

 // Invoke factory to obtain a resource. The security
 // principal for the resource is not given, and
 // therefore it will be configured by the Deployer.
 java.sql.Connection con = ds.getConnection();
 ...
}

5.7.1.3. Declaration of Resource Manager Connection Factory References in Deployment
Descriptor

Although a resource manager connection factory reference is an entry in the application
component’s environment, the Application Component Provider must not use an env-entry element
to declare it.

Instead, the Application Component Provider must declare all the resource manager connection
factory references using either annotations on the application component’s code or in the
deployment descriptor using the resource-ref elements. This allows the consumer of the application
component’s JAR file (the Application Assembler or Deployer) to discover all the resource manager
connection factory references used by an application component. Deployment descriptor entries
may also be used to specify injection of a resource manager connection factory reference into an
application component.

Each resource-ref element describes a single resource manager connection factory reference. The

81

resource-ref element consists of the description element, the mandatory res-ref-name element, and
the optional res-sharing-scope, res-type, and res-auth elements. The res-ref-name element contains
the name of the environment entry used in the application component’s code. The name of the
environment entry is relative to the java:comp/env context (for example, the name should be
jdbc/EmployeeAppDB rather than java:comp/env/jdbc/EmployeeAppDB). The res-type element
contains the Java programming language type of the resource manager connection factory that the
application component code expects. The res-type element is optional if an injection target is
specified for this resource; in this case the res-type defaults to the type of the injection target. The
res-auth element indicates whether the application component code performs resource sign on
programmatically, or whether the container signs on to the resource based on the principal
mapping information supplied by the Deployer. The Application Component Provider indicates the
sign on responsibility by setting the value of the res-auth element to Application or Container. If not
specified, the default is Container. The res-sharing-scope element indicates whether connections to
the resource manager obtained through the given resource manager connection factory reference
can be shared or whether connections are unshareable. The value of the res-sharing-scope element
is Shareable or Unshareable. If the res-sharing-scope element is not specified, connections are
assumed to be shareable.

A resource manager connection factory reference is scoped to the application component whose
declaration contains the resource-ref element. This means that the resource manager connection
factory reference is not accessible from other application components at runtime, and that other
application components may define resource-ref elements with the same res-ref-name without
causing a name conflict.

The type declaration allows the Deployer to identify the type of the resource manager connection
factory.

Note that the indicated type is the Java programming language type of the resource manager
connection factory, not the type of the connection.

The following example is the declaration of the resource reference used by the application
component illustrated in the previous subsection.

...
<resource-ref>
 <description>
 A data source for the database in which
 the EmployeeService enterprise bean will
 record a log of all transactions.
 </description>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
...

The following example modifies the previous one by linking the resource reference being defined

82

to another one, using a well-known JNDI name for the latter.

...
<resource-ref>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 <lookup-name>java:app/env/TheEmployeeDB</lookup-name>
</resource-ref>
...

5.7.1.4. Standard Resource Manager Connection Factory Types

The Application Component Provider must use the javax.sql.DataSource resource manager
connection factory type for obtaining JDBC API connections.

The Application Component Provider must use the jakarta.jms.ConnectionFactory, the
jakarta.jms.QueueConnectionFactory, or the jakarta.jms.TopicConnectionFactory for obtaining
Jakarta Messaging connections.

The Application Component Provider must use the jakarta.mail.Session resource manager
connection factory type for obtaining Jakarta Mail API connections.

The Application Component Provider must use the java.net.URL resource manager connection
factory type for obtaining URL connections.

It is recommended that the Application Component Provider name JDBC API data sources in the
java:comp/env/jdbc subcontext, all Jakarta Messaging connection factories in the java:comp/env/jms
subcontext, all Jakarta Mail API connection factories in the java:comp/env/mail subcontext, and all
URL connection factories in the java:comp/env/url subcontext. Note that resource manager
connection factory references declared via annotations will not, by default, appear in any
subcontext.

The Jakarta EE Connector Architecture allows an application component to use the annotation or
API described in this section to obtain resource objects that provide access to additional back-end
systems.

5.7.2. Deployer’s Responsibilities

The Deployer uses deployment tools to bind the resource manager connection factory references to
the actual resource factories configured in the target operational environment.

The Deployer must perform the following tasks for each resource manager connection factory
reference declared in the deployment descriptor:

• Bind the resource manager connection factory reference to a resource manager connection
factory that exists in the operational environment. The Deployer may use, for example, the JNDI
LinkRef mechanism to create a symbolic link to the actual JNDI name of the resource manager

83

connection factory. The resource manager connection factory type must be compatible with the
type declared in the source code or in the res-type element. If the resource manager connection
factory references includes a lookup annotation element or a lookup-name deployment
descriptor element, the Deployer may choose whether to honor it and have the corresponding
lookup be performed, or override it with a binding of his or her own choosing.

• Provide any additional configuration information that the resource manager needs for opening
and managing the resource. The configuration mechanism is resource manager specific, and is
beyond the scope of this specification.

• If the value of the Resource annotation authenticationType element is
AuthenticationType.CONTAINER or the deployment descriptor’s res-auth element is Container,
the Deployer is responsible for configuring the sign on information for the resource manager.
This is performed in a manner specific to the container and resource manager; it is beyond the
scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used at
the application component level to the security domain and principal realm of the resource
manager, the Deployer or System Administrator must define the mapping. The mapping is
performed in a manner specific to the container and resource manager; it is beyond the scope of
this specification.

5.7.3. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the resource manager connection factory classes that are
required by this specification.

• If the Application Component Provider sets the authenticationType element of the Resource
annotation to AuthenticationType.APPLICATION or the res-auth of a resource reference to
Application, the container must allow the application component to perform explicit
programmatic sign on using the resource manager’s API.

• If the Application Component Provider sets the shareable element of the Resource annotation to
false or sets the res-sharing-scope of a resource manager connection factory reference to
Unshareable, the container must not attempt to share the connections obtained from the
resource manager connection factory reference.[9]

• The container must provide tools that allow the Deployer to set up resource sign on information
for the resource manager references whose authenticationType is set to
AuthenticationType.CONTAINER or whose res-auth element is set to Container. The minimum
requirement is that the Deployer must be able to specify the username/password information
for each resource manager connection factory reference declared by the application
component, and the container must be able to use the username/password combination for user
authentication when obtaining a connection by invoking the resource manager connection
factory.

Although not required by this specification, we expect that containers will support some form of a

84

single sign on mechanism that spans the application server and the resource managers. The
container will allow the Deployer to set up the resources such that the principal can be propagated
(directly or through principal mapping) to a resource manager, if required by the application.

While not required by this specification, most Jakarta EE products will provide the following
features:

• A tool to allow the System Administrator to add, remove, and configure a resource manager for
the Jakarta EE Server.

• A mechanism to pool resources for the application components and otherwise manage the use
of resources by the container. The pooling must be transparent to the application components.

5.7.4. System Administrator’s Responsibilities

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the Jakarta EE Server environment.

In some scenarios, these tasks can be performed by the Deployer.

5.8. Resource Environment References
This section describes the programming and deployment descriptor interfaces that allow the
Application Component Provider to refer to administered objects that are associated with a
resource (for example, a Connector CCI InteractionSpec instance) by using “logical” names called
resource environment references. The resource environment references are special entries in the
application component’s environment. The Deployer binds the resource environment references to
administered objects in the target operational environment.

5.8.1. Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and responsibilities with
respect to resource environment references.

5.8.1.1. Injection of Resource Environment References

A field or a method of an application component may be annotated with the Resource annotation to
request injection of a resouce environment reference. The name and type of the resource
environment reference are as described earlier. The authenticationType and shareable elements of
the Resource annotation must not be specified; resource environment entries are not shareable and
do not require authentication. The use of the Resource annotation to declare a resource
environment reference differs from the use of the Resource annotation to declare other
environment references only in that the type of a resource environment reference is not one of the
Java language types used for other environment references.

5.8.1.2. Resource Environment Reference Programming Interfaces

The Application Component Provider may use resource environment references to locate
administered objects that are associated with resources as follows.

85

• Assign an entry in the application component’s environment to the reference. (See subsection
Declaration of Resource Environment References in Deployment Descriptor for information on
how resource environment references are declared in the deployment descriptor.)

• This specification recommends, but does not require, that all resource environment references
be organized in the appropriate subcontext of the component’s environment for the resource
type. Note that resource environment references declared via annotations will not, by default,
appear in any subcontext.

• Look up the administered object in the application component’s environment using JNDI.

5.8.1.3. Declaration of Resource Environment References in Deployment Descriptor

Although the resource environment reference is an entry in the application component’s
environment, the Application Component Provider must not use a env-entry element to declare it.
Instead, the Application Component Provider must declare all references to administered objects
associated with resources using either annotations on the application component’s code or the
resource-env-ref elements of the deployment descriptor. This allows the application component’s
JAR file consumer to discover all the resource environment references used by the application
component. Deployment descriptor entries may also be used to specify injection of a resource
environment reference into an application component.

Each resource-env-ref element describes the requirements that the referencing application
component has for the referenced administered object. The resource-env-ref element contains
optional description and resource-env-ref-type elements and the mandatory resource-env-ref-name
element. The resource-env-ref-type element is optional if an injection target is specified for this
resource; in this case the resource-env-ref-type defaults to the type of the injection target.

The resource-env-ref-name element specifies the resource environment reference name. Its value is
the environment entry name used in the application component code. The name of the resource
environment reference is relative to the java:comp/env context. The resource-env-ref-type element
specifies the expected type of the referenced object.

A resource environment reference is scoped to the application component whose declaration
contains the resource-env-ref element. This means that the resource environment reference is not
accessible to other application components at runtime, and that other application components may
define resource-env-ref elements with the same resource-env-ref-name without causing a name
conflict.

A resource environment reference may specify a lookup-name to link the reference being defined to
another one via a JNDI name.

5.8.2. Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment references are bound to
administered objects that exist in the operational environment. The Deployer may use, for
example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the
target object. The Deployer may override the linkage preferences of a resource environment

86

reference that includes a lookup annotation element or lookup-name deployment descriptor
element.

• The Deployer must ensure that the target object is type-compatible with the type declared for
the resource environment reference. This means that the target object must be of the type
indicated in the Resource annotation or the resource-env-ref-type element.

5.8.3. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider must provide the deployment tools that allow the Deployer to
perform the tasks described in the previous subsection. The deployment tools provided by the
Jakarta EE Product Provider must be able to process the information supplied in the class file
annotations and the resource-env-ref elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved resource
environment references, and allow him or her to resolve a resource environment reference by
binding it to a specified compatible target object in the environment.

5.9. Message Destination References
This section describes the programming and deployment descriptor interfaces that allow the
Application Component Provider to refer to message destination objects by using “logical” names
called message destination references. Message destination references are special entries in the
application component’s environment. The Deployer binds the message destination references to
administered message destinations in the target operational environment.

The requirements in this section only apply to Jakarta EE products that include support for Jakarta
Messaging.

5.9.1. Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and responsibilities with
respect to message destination references.

5.9.1.1. Injection of Message Destination References

A field or a method of an application component may be annotated with the Resource annotation to
request injection of a message destination reference. The name and type of the resource
environment reference are as described earlier. The authenticationType and shareable elements of
the Resource annotation must not be specified; message destination references are not shareable
and do not require authentication.

Note that when using the Resource annotation to declare a message destination reference it is not
possible to link the reference to other references to the same message destination or to specify
whether the message destination is used to produce or consume messages. The deployment
descriptor entries described later do provide a way to associate many message destination
references with a single message destination and to specify whether each message destination
reference is used to produce, consume, or both produce and consume messages, so that the entire
message flow of an application may be specified. The Application Assembler may use these message

87

destination links to link together message destination references that have been declared using the
Resource annotation. A message destination reference declared via the Resource annotation is
assumed to be used to both produce and consume messages; this default may be overridden using a
deployment descriptor entry.

The following example illustrates how an application component uses the Resource annotation to
request injection of a message destination reference.

@Resource jakarta.jms.Queue stockQueue;

The following example illustrates how a message destination reference can be linked to another
one by specifying its JNDI name, perhaps in a different namespace, as a value for the lookup
element.

@Resource(lookup="java:app/env/TheOrderQueue")
jakarta.jms.Queue orderQueue;

5.9.1.2. Message Destination Reference Programming Interfaces

The Application Component Provider may use message destination references to locate message
destinations, as follows.

• Assign an entry in the application component’s environment to the reference. (See subsection
Declaration of Message Destination References in Deployment Descriptor for information on
how message destination references are declared in the deployment descriptor.)

• This specification recommends, but does not require, that all message destination references be
organized in the appropriate subcontext of the component’s environment for the resource type
(for example, in the java:comp/env/jms JNDI context for Jakarta Messaging Destinations). Note
that message destination references declared via annotations will not, by default, appear in any
subcontext.

• Look up the administered object in the application component’s environment using JNDI.

The following example illustrates how an application component uses a message destination
reference to locate a Jakarta Messaging Destination.

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the Jakarta Messaging StockQueue in the environment.
Object result = initCtx.lookup("java:comp/env/jms/StockQueue");

// Convert the result to the proper type.
jakarta.jms.Queue queue = (jakarta.jms.Queue)result;

In the example, the Application Component Provider assigned the environment entry
jms/StockQueue as the message destination reference name to refer to a Jakarta Messaging queue.

88

5.9.1.3. Declaration of Message Destination References in Deployment Descriptor

Although the message destination reference is an entry in the application component’s
environment, the Application Component Provider must not use a env-entry element to declare it.
Instead, the Application Component Provider should declare all references to message destinations
using either the Resource annotation in the application component’s code or the message-
destination-ref elements of the deployment descriptor. This allows the application component’s JAR
file consumer to discover all the message destination references used by the application
component. Deployment descriptor entries may also be used to specify injection of a message
destination reference into an application component.

Each message-destination-ref element describes the requirements that the referencing application
component has for the referenced destination. The message-destination-ref element contains
optional description, message-destination-type, and message-destination-usage elements and the
mandatory message-destination-ref-name element.

The message-destination-ref-name element specifies the message destination reference name. Its
value is the environment entry name used in the application component code. By default, the name
of the message destination reference is relative to the java:comp/env context (for example, the name
should be jms/StockQueue rather than java:comp/env/jms/StockQueue). The message-destination-
type element specifies the expected type of the referenced destination. For example, in the case of a
Jakarta Messaging Destination, its value might be jakarta.jms.Queue. The message-destination-type
element is optional if an injection target is specified for this message destination reference; in this
case the message-destination-type defaults to the type of the injection target. The message-
destination-usage element specifies whether messages are consumed from the message destination,
produced for the destination, or both. If not specified, messages are assumed to be both consumed
and produced.

A message destination reference is scoped to the application component whose declaration
contains the message-destination-ref element. This means that the message destination reference is
not accessible to other application components at runtime, and that other application components
may define message-destination-ref elements with the same message-destination-ref-name without
causing a name conflict.

The following example illustrates the declaration of message destination references in the
deployment descriptor.

...
<message-destination-ref>
 <description>
 This is a reference to a Jakarta Messaging queue used in the
 processing of Stock info
 </description>
 <message-destination-ref-name>
 jms/StockInfo
 </message-destination-ref-name>
 <message-destination-type>
 jakarta.jms.Queue
 </message-destination-type>

89

 <message-destination-usage>
 Produces
 </message-destination-usage>
</message-destination-ref>
...

5.9.2. Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common logical
destinations specified in the enterprise bean deployment descriptor, the Application Assembler can
specify the flow of messages within an application. The Application Assembler uses the message-
destination element, the message-destination-link element of the message-destination-ref element,
and the message-destination-link element of an ejb-jar’s message-driven element to link message
destination references to a common logical destination.

The Application Assembler specifies the link between message consumers and producers as
follows:

• The Application Assembler uses the message-destination element to specify a logical message
destination within the application. The message-destination element defines a message-
destination-name, which is used for the purpose of linking.

• The Application Assembler uses the message-destination-link element of the message-
destination-ref element of an application component that produces messages to link it to the
target destination. The value of the message-destination-link element is the name of the target
destination, as defined in the message-destination-name element of the message-destination
element. The message-destination element can be in any module in the same Jakarta EE
application as the referencing component. The Application Assembler uses the message-
destination-usage element of the message-destination-ref element to indicate that the
referencing application component produces messages to the referenced destination.

• If the consumer of messages from the common destination is a message-driven bean, the
Application Assembler uses the message-destination-link element of the message-driven element
to reference the logical destination. If the Application Assembler links a message-driven bean to
its source destination, he or she should use the message-destination-type element of the
message-driven element to specify the expected destination type. Otherwise, the Application
Assembler uses the message-destination-link element of the message-destination-ref element of
the application component that consumes messages to link to the common destination. In the
latter case, the Application Assembler uses the message-destination-usage element of the
message-destination-ref element to indicate that the application component consumes messages
from the referenced destination.

• To avoid the need to rename message destinations to have unique names within an entire
Jakarta EE application, the Application Assembler may use the following syntax in the message-
destination-link element of the referencing application component. The Application Assembler
specifies the path name of the JAR file containing the referenced message destination and
appends the message-destination-name of the target destination separated from the path name
by #. The path name is relative to the referencing application component JAR file. In this
manner, multiple destinations with the same message-destination-name may be uniquely
identified.

90

• When linking message destinations, the Application Assembler must ensure that the consumers
and producers for the destination require a message destination of the same or compatible type,
as determined by the messaging system.

5.9.3. Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared message destination references are bound to
administered objects that exist in the operational environment. The Deployer may use, for
example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the
target object. The Deployer may override the linkage preferences of a message destination
reference that includes a lookup-name element.

• The Deployer must ensure that the target object is type-compatible with the type declared for
the message destination reference. This means that the target object must be of the type
indicated in the message-destination-type element.

• The Deployer must observe the message destination links specified by the Application
Assembler.

5.9.4. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider must provide the deployment tools that allow the Deployer to
perform the tasks described in the previous subsection. The deployment tools provided by the
Jakarta EE Product Provider must be able to process the information supplied in the message-
destination-ref elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved message
destination references, and allow him or her to resolve a message destination reference by binding
it to a specified compatible target object in the environment.

5.10. UserTransaction References
Certain Jakarta EE application component types are allowed to use the Jakarta Transactions
UserTransaction interface to start, commit, and abort transactions. Such application components
can find an appropriate object implementing the UserTransaction interface by looking up the JNDI
name java:comp/UserTransaction or by requesting injection of a UserTransaction object using the
Resource annotation. The authenticationType and shareable elements of the Resource annotation
must not be specified. The container is only required to provide the java:comp/UserTransaction
name, or inject a UserTransaction object, for those components that can validly make use of it. Any
such reference to a UserTransaction object is only valid within the component instance that
performed the lookup. See the individual component definitions for further information.

The following example illustrates how an application component acquires and uses a
UserTransaction object via injection.

@Resource UserTransaction tx;
public void updateData(...) {

91

 ...
 // Start a transaction.
 tx.begin();
 ...
 // Perform transactional operations on data.
 ...
 // Commit the transaction.
 tx.commit();
 ...
}

The following example illustrates how an application component acquires and uses a
UserTransaction object using a JNDI lookup.

public void updateData(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the UserTransaction object.
 UserTransaction tx = (UserTransaction)initCtx.lookup(
 "java:comp/UserTransaction");

 // Start a transaction.
 tx.begin();
 ...
 // Perform transactional operations on data.
 ...
 // Commit the transaction.
 tx.commit();
 ...
}

A UserTransaction object reference may also be declared in a deployment descriptor in the same
way as a resource environment reference. Such a deployment descriptor entry may be used to
specify injection of a UserTransaction object.

The requirements in this section only apply to Jakarta EE products that include support for Jakarta
Transactions.

5.10.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a UserTransaction
object using a Resource annotation, or using the defined name to look up the UserTransaction
object.

Only some application component types are required to be able to access a UserTransaction object;
see Jakarta EE Technologies in this specification and the Jakarta Enterprise Beans specification for
details.

92

5.10.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for providing an appropriate UserTransaction object
as required by this specification.

5.11. TransactionSynchronizationRegistry References
The Jakarta Transactions TransactionSynchronizationRegistry interface may be used by system level
components such as persistence managers that may be packaged with enterprise bean or web
application components. Such components can find an appropriate object implementing the
TransactionSynchronizationRegistry interface by looking up the JNDI name
java:comp/TransactionSynchronizationRegistry or by requesting injection of a
TransactionSynchronizationRegistry object using the Resource annotation. The authenticationType
and shareable elements of the Resource annotation must not be specified. The container is only
required to provide the java:comp/TransactionSynchronizationRegistry name, or inject a
TransactionSynchronizationRegistry object, for those components that can validly make use of it.
Any such reference to a TransactionSynchronizationRegistry object is only valid within the
component instance that performed the lookup. See the individual component definitions for
further information.

A TransactionSynchronizationRegistry object reference may also be declared in a deployment
descriptor in the same way as a resource environment reference. Such a deployment descriptor
entry may be used to specify injection of a TransactionSynchronizationRegistry object.

The requirements in this section only apply to Jakarta EE products that include support for Jakarta
Transactions.

5.11.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a
TransactionSynchronizationRegistry object using a Resource annotation, or using the defined name
to look up the TransactionSynchronizationRegistry object.

Only some application component types are required to be able to access a
TransactionSynchronizationRegistry object; see Jakarta EE Technologies in this specification for
details.

5.11.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for providing an appropriate
TransactionSynchronizationRegistry object as required by this specification.

5.12. ORB References (optional)

 Support for CORBA as an application service is optional.

Some Jakarta EE applications will need to make use of the CORBA ORB to perform certain
operations. Such applications can find an appropriate object implementing the ORB interface by

93

looking up the JNDI name java:comp/ORB or by requesting injection of an ORB object. The container
is required to provide the java:comp/ORB name for all components. Any such reference to a ORB
object is only valid within the component instance that performed the lookup.

The following example illustrates how an application component acquires and uses an ORB object
via injection.

@Resource ORB orb;
public void method(...) {
 ...
 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}

The following example illustrates how an application component acquires and uses an ORB object
using a JNDI lookup.

public void method(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();
 // Look up the ORB object.
 ORB orb = (ORB)initCtx.lookup("java:comp/ORB");
 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}

An ORB object reference may also be declared in a deployment descriptor in the same way as a
resource manager connection factory reference. Such a deployment descriptor entry may be used
to specify injection of an ORB object.

The ORB instance available under the JNDI name java:comp/ORB may always be a shared instance.
By default, the ORB instance injected into a component or declared via a deployment descriptor
entry may also be a shared instance. However, the application may set the shareable element of the
Resource annotation to false , or may set the res-sharing-scope element in the deployment descriptor
to Unshareable , to request a non-shared ORB instance.

5.12.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of the ORB object using
the Resource annotation, or using the defined name to look up the ORB object. If the shareable
element of the Resource annotation is set to false , the ORB object injected will not be the shared
instance used by other components in the application but instead will be a private ORB instance
used only by this component.

94

5.12.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for providing an appropriate ORB object as required
by this specification.

5.13. Persistence Unit References
This section describes the metadata annotations and deployment descriptor elements that allow the
application component code to refer to the entity manager factory for a persistence unit using a
logical name called a persistence unit reference. Persistence unit references are special entries in the
application component’s environment. The Deployer binds the persistence unit references to entity
manager factories that are configured in accordance with the persistence.xml specification for the
persistence unit, as described in the Jakarta Persistence specification.

The requirements in this section only apply to Jakarta EE products that include support for the
Jakarta Persistence API.

5.13.1. Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating the entity
manager factory for a persistence unit and defines his or her responsibilities. The first subsection
describes annotations for injecting references to an entity manager factory for a persistence unit;
the second describes the API for accessing an entity manager factory using a persistence unit
reference; and the third describes syntax for declaring persistence unit references in a deployment
descriptor.

5.13.1.1. Injection of Persistence Unit References

A field or a method of an application component may be annotated with the PersistenceUnit
annotation. The name element specifies the name under which the entity manager factory for the
referenced persistence unit may be located in the JNDI naming context. The optional unitName
element specifies the name of the persistence unit as declared in the persistence.xml file that
defines the persistence unit.

The following code example illustrates how an application component uses annotations to declare
persistence unit references.

@PersistenceUnit
EntityManagerFactory emf;

@PersistenceUnit(unitName="InventoryManagement")
EntityManagerFactory inventoryEMF;

5.13.1.2. Programming Interfaces for Persistence Unit References

The Application Component Provider must use persistence unit references to obtain references to
entity manager factories as follows.

95

• Assign an entry in the application component’s environment to the persistence unit reference.
(See subsection Declaration of Persistence Unit References in Deployment Descriptor for
information on how persistence unit references are declared in the deployment descriptor.) It is
recommended that the Application Component Provider organize all persistence unit
references in the java:comp/env/persistence subcontext of the component’s environment.

• Lookup the entity manager factory for the persistence unit in the application component’s
environment using JNDI.

• Invoke the appropriate method on the entity manager factory to obtain an entity manager
instance.

The following code sample illustrates obtaining an entity manager factory.

@PersistenceUnit(name="persistence/InventoryAppDB")
@Stateless
public class InventoryManagerBean implements InventoryManager {
 EJBContext ejbContext;
 ...
 public void updateInventory(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain entity manager factory
 EntityManagerFactory = (EntityManagerFactory)
 initCtx.lookup(
 "java:comp/env/persistence/InventoryAppDB");

 // use factory to obtain application-managed entity manager
 EntityManager em = emf.createEntityManager();
 ...
 }
}

5.13.1.3. Declaration of Persistence Unit References in Deployment Descriptor

Although a persistence unit reference is an entry in the application component’s environment, the
Application Component Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Application Component Provider must declare all
the persistence unit references in the deployment descriptor using the persistence-unit-ref elements.
This allows the Application Assembler or Deployer to discover all the persistence unit references
used by an application component. Deployment descriptor entries may also be used to specify
injection of a persistence unit reference into an application component.

Each persistence-unit-ref element describes a single entity manager factory reference for the
persistence unit. The persistence-unit-ref element consists of the optional description and
persistence-unit-name elements, and the mandatory persistence-unit-ref-name element.

96

The persistence-unit-ref-name element contains the name of the environment entry used in the
application component’s code. The name of the environment entry is relative to the java:comp/env
context (e.g., the name should be persistence/InventoryAppDB rather than
java:comp/env/persistence/InventoryAppDB). The persistence-unit-name element is the name of the
persistence unit, as specified in the persistence.xml file for the persistence unit.

The following example is the declaration of a persistence unit reference used by the
InventoryManager enterprise bean illustrated in the previous subsection.

...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management
 application.
 </description>
 <persistence-unit-ref-name>
 persistence/InventoryAppDB
 </persistence-unit-ref-name>
 <persistence-unit-name>
 InventoryManagement
 </persistence-unit-name>
 </persistence-unit-ref>
...

5.13.2. Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment descriptor
to disambiguate a reference to a persistence unit. The Application Assembler (or Application
Component Provider) may use the following syntax in the persistence-unit-name element of the
referencing application component to avoid the need to rename persistence units to have unique
names within a Jakarta EE application. The Application Assembler specifies the path name of the
root of the persistence.xml file for the referenced persistence unit and appends the name of the
persistence unit separated from the path name by #. The path name is relative to the referencing
application component jar file. In this manner, multiple persistence units with the same persistence
unit name may be uniquely identified when the Application Assembler cannot change persistence
unit names.

For example,

...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management
 application.
 </description>
 <persistence-unit-ref-name>
 persistence/InventoryAppDB
 </persistence-unit-ref-name>

97

 <persistence-unit-name>
 ../lib/inventory.jar#InventoryManagement
 </persistence-unit-name>
 </persistence-unit-ref>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit name
InventoryManagement declared in the InventoryManagerBean to the persistence unit named
InventoryManagement defined in inventory.jar .

The following rules apply to how a deployment descriptor entry may override a PersistenceUnit
annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The persistence-unit-name overrides the unitName element of the annotation. The Application
Assembler or Deployer should exercise caution in changing this value, if specified, as doing so is
likely to break the application.

• The injection target, if specified, must name exactly the annotated field or property method.

5.13.3. Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence unit reference to the actual entity
manager factory configured for the persistence unit in the target operational environment.

The Deployer must perform the following tasks for each persistence unit reference declared in the
metadata annotations or deployment descriptor:

• Bind the persistence unit reference to an entity manager factory configured for the persistence
unit that exists in the operational environment. The Deployer may use, for example, the JNDI
LinkRef mechanism to create a symbolic link to the actual JNDI name of the entity manager
factory.

• If the persistence unit name is specified, the Deployer should bind the persistence unit
reference to the entity manager factory for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
managing the persistence unit, as described in the Jakarta Persistence specification.

5.13.4. Jakarta EE Product Provider’s Responsibility

The Jakarta EE Product Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the entity manager factory classes for the persistence units that
are configured with the container. The implementation of the entity manager factory classes
may be provided by the container directly or by the container in conjunction with a third-party
persistence provider, as described in the Jakarta Persistence specification.

98

5.13.5. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the server environment.

In some scenarios, these tasks can be performed by the Deployer.

5.14. Persistence Context References
This section describes the metadata annotations and deployment descriptor elements that allow the
application component code to refer to a container-managed entity manager of a specified
persistence context type using a logical name called a persistence context reference. Persistence
context references are special entries in the application component’s environment. The Deployer
binds the persistence context references to container-managed entity managers for persistence
contexts of the specified type and configured in accordance with their persistence unit, as
described in the Jakarta Persistence specification.

The requirements in this section only apply to Jakarta EE products that include support for the
Jakarta Persistence API.

5.14.1. Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating container-
managed entity managers and defines his or her responsibilities. The first subsection describes
annotations for injecting references to container-managed entity managers; the second describes
the API for accessing references to container-managed entity managers; and the third describes
syntax for declaring these references in a deployment descriptor.

5.14.1.1. Injection of Persistence Context References

A field or a method of an application component may be annotated with the PersistenceContext
annotation. The name element specifies the name under which a container-managed entity
manager for the referenced persistence unit may be located in the JNDI naming context. The
optional unitName element specifies the name of the persistence unit as declared in the
persistence.xml file that defines the persistence unit. The optional type element specifies whether a
transaction-scoped or extended persistence context is to be used. If the type is not specified, a
transaction-scoped persistence context will be used. References to container-managed entity
managers with extended persistence contexts can only be injected into stateful session beans. The
optional synchronization element specifies whether the persistence context is always automatically
synchronized with the current transaction or whether it must be explicitly joined to the
transaction. If the synchronization element is not specified, the persistence context will be
automatically synchronized. The optional properties element specifies configuration properties to
be passed to the persistence provider when the entity manager is created.

The following code example illustrates how an application component uses annotations to declare
persistence context references.

@PersistenceContext(type=EXTENDED)

99

EntityManager em;

5.14.1.2. Programming Interfaces for Persistence Context References

The Application Component Provider may use a persistence context reference to obtain a reference
to a container-managed entity manager configured for a persistence unit as follows:

• Assign an entry in the application component’s environment to the persistence context
reference. (See subsection Declaration of Persistence Context References in Deployment
Descriptor for information on how persistence context references are declared in the
deployment descriptor.) It is recommended that the Application Component Provider organize
all persistence context references in the java:comp/env/persistence subcontext of the
component’s environment.

• Lookup the container-managed entity manager for the persistence unit in the application
component’s environment using the JNDI API.

The following code sample illustrates obtaining an entity manager for a persistence context.

@PersistenceContext(name="persistence/InventoryAppMgr")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 public void updateInventory(...) {
 ...

 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // JNDI lookup to obtain container-managed entity manager
 EntityManager = (EntityManager)
 initCtx.lookup(
 "java:comp/env/persistence/InventoryAppMgr");
 ...
 }
}

5.14.1.3. Declaration of Persistence Context References in Deployment Descriptor

Although a persistence context reference is an entry in the application component’s environment,
the Application Component Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Application Component Provider must declare all
the persistence context references in the deployment descriptor using the persistence-context-ref
elements. This allows the Application Assembler or Deployer to discover all the persistence context
references used by an application component. Deployment descriptor entries may also be used to
specify injection of a persistence context reference into a bean.

Each persistence-context-ref element describes a single container-managed entity manager

100

reference. The persistence-context-ref element consists of the optional description, persistence-unit-
name, persistence-context-type, persistence-context-synchronization, and persistence-property
elements, and the mandatory persistence-context-ref-name element.

The persistence-context-ref-name element contains the name of the environment entry used in the
application component’s code. The name of the environment entry is relative to the java:comp/env
context (e.g., the name should be persistence/InventoryAppMgr rather than
java:comp/env/persistence/InventoryAppMgr). The persistence-unit-name element is the name of the
persistence unit, as specified in the persistence.xml file for the persistence unit. The persistence-
context-type element specifies whether a transaction-scoped or extended persistence context is to
be used. Its value is either Transaction or Extended. If the persistence context type is not specified, a
transaction-scoped persistence context will be used. The optional persistence-context-
synchronization element specifies whether the persistence context is automatically synchronized
with the current transaction. Its value is either Synchronized or Unsynchronized. If the persistence
context synchronization is not specified, the persistence context will be automatically
synchronized. The optional persistence-property elements specify configuration properties that are
passed to the persistence provider when the entity manager is created.

The following example is the declaration of a persistence context reference used by the
InventoryManager enterprise bean illustrated in the previous subsection.

...
 <persistence-context-ref>
 <description>
 Persistence context for the inventory management
 application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppDB
 </persistence-context-ref-name>
 <persistence-unit-name>
 InventoryManagement
 </persistence-unit-name>
 </persistence-context-ref>
...

5.14.2. Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment descriptor
to specify a reference to a persistence unit using the syntax described in Application Assembler’s
Responsibilities. In this manner, multiple persistence units with the same persistence unit name
may be uniquely identified when the persistence unit names cannot be changed.

For example,

...
 <persistence-context-ref>
 <description>

101

 Persistence context for the inventory management
 application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppDB
 </persistence-context-ref-name>
 <persistence-unit-name>
 ../lib/inventory.jar#InventoryManagement
 </persistence-unit-name>
 </persistence-context-ref>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit name
InventoryManagement declared in the InventoryManagerBean to the persistence unit named
InventoryManagement defined in inventory.jar .

The following rules apply to how a deployment descriptor entry may override a PersistenceContext
annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The persistence-unit-name overrides the unitName element of the annotation. The Application
Assembler or Deployer should exercise caution in changing this value, if specified, as doing so is
likely to break the application.

• The persistence-context-type, if specified, overrides the type element of the annotation. In
general, the Application Assembler or Deployer should never change the value of this element,
as doing so is likely to break the application.

• The persistence-context-synchronization, if specified, overrides the synchronization element of
the annotation. In general, the Application Assembler or Deployer should never change the
value of this element, as doing so is likely to break the application.

• Any persistence-property elements are added to those specified by the PersistenceContext
annotation. If the name of a specified property is the same as one specified by the
PersistenceContext annotation, the value specified in the annotation is overridden.

• The injection target, if specified, must name exactly the annotated field or property method.

5.14.3. Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence context reference to the container-
managed entity manager for the persistence context of the specified type and configured for the
persistence unit in the target operational environment.

The Deployer must perform the following tasks for each persistence context reference declared in
the metadata annotations or deployment descriptor:

• Bind the persistence context reference to a container-managed entity manager for a persistence
context of the specified type and configured for the persistence unit as specified in the
persistence.xml file for the persistence unit that exists in the operational environment. The

102

Deployer may use, for example, the JNDI LinkRef mechanism to create a symbolic link to the
actual JNDI name of the entity manager.

• If the persistence unit name is specified, the Deployer should bind the persistence context
reference to an entity manager for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
creating such an entity manager and for managing the persistence unit, as described in the
Jakarta Persistence specification.

5.14.4. Jakarta EE Product Provider’s Responsibility

The Jakarta EE Product Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the entity manager classes for the persistence units that are
configured with the container. This implementation may be provided by the container directory
or by the container in conjunction with a third-party persistence provider, as described in the
Jakarta Persistence specification.

5.14.5. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the server environment.

In some scenarios, these tasks can be performed by the Deployer.

5.15. Application Name and Module Name References
A component may access the name of the current application using the pre-defined JNDI name
java:app/AppName. A component may access the name of the current module using the pre-defined
JNDI name java:module/ModuleName. Both of these names are represented by String objects.

5.15.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of the application
name or module name using a Resource annotation on a String method or field, or using the
defined name to look up the application name or module name.

5.15.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for providing the correct application name and
module name String objects as required by this specification.

5.16. Application Client Container Property
An application may determine whether it is executing in a Jakarta EE application client container

103

by using the pre-defined JNDI name java:comp/InAppClientContainer. This property is represented
by a Boolean object. If the application is running in a Jakarta EE application client container, the
value of this property is true. If the application is running in a Jakarta EE web or enterprise bean
container, the value of this property is false.

5.16.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of the application
client container property using a Resource annotation on a Boolean or boolean method or field, or
using the defined name to look up the application client container property.

5.16.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for providing the correct application client
container property as required by this specification.

5.17. Validator and Validator Factory References
This section describes the metadata annotations and deployment descriptor entries that allow an
application to obtain instances of the Validation Validator and ValidatorFactory types.

Applications that need to use those interfaces can find appropriate objects by looking up the name
java:comp/Validator for Validator and java:comp/ValidatorFactory for ValidatorFactory, or by
requesting the injection of an object of the appropriate type via the Resource annotation. The
authenticationType and shareable elements of the Resource annotation must not be specified.

@Resource ValidatorFactory validatorFactory;

@Resource Validator validator;

For Validator objects, the default validation context is used. This means that all such Validators will
be equivalent to those obtained by first acquiring a ValidatorFactory and then invoking the
getValidator method on it with no arguments.

In other words, the following two code snippets are equivalent:

// obtaining a Validator directly
Context initCtx = new InitialContext();
Validator validator = (Validator)initCtx.lookup(
 "java:comp/Validator");

// obtaining a Validator from a ValidatorFactory
Context initCtx = new InitialContext();
Validator validator =
 ((ValidatorFactory) initCtx.lookup(
 "java:comp/ValidatorFactory"))
 .getValidator();

104

A Validator or ValidatorFactory object reference may also be declared in a deployment descriptor in
the same way as a resource environment reference.

In order to customize the returned ValidatorFactory, a Jakarta Enterprise Beans, web or application
client module may specify a Validation XML deployment descriptor, as described in the Validation
specification.

A validation deployment descriptor only affects ValidatorFactory instances in that module.

There is no per-application validation deployment descriptor.

5.17.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a Validator or of a
ValidatorFactory using a Resource annotation, or using the defined names to look up a Validator or
ValidatorFactory instance.

The Application Component Provider may customize the ValidatorFactory and (indirectly) Validator
instances by including a Validation deployment descriptor inside a specific module of the
application.

5.17.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider must make a default ValidatorFactory available at
java:comp/ValidatorFactory. The default ValidatorFactory available at java:comp/ValidatorFactory
must support use of CDI if CDI is enabled for the module. In particular, all of the classes specified by
the jakarta.validation.BootstrapConfiguration interface must be created as non-contextual objects
using CDI, as described in Support for Dependency Injection. These objects must be used to
configure the default ValidatorFactory available at java:comp/ValidatorFactory in accordance with
the bootstrapping APIs described by the Validation specification.

The default ValidatorFactory is a single instance per module; each lookup of
java:comp/ValidatorFactory returns the same instance.

The default Validator is created by the default ValidatoryFactory using the getValidator method.
Each lookup of java:comp/Validator returns a new Validator instance.

5.18. Resource Definition and Configuration
In addition to referencing resources as defined in this chapter, an application may specify the
definition and configuration of resources that it requires in its operational environment.

Each application has a set of “physical” resources and services that it depends on (database storage,
queueing, mail, etc.) and which need to be made available to it when it is deployed. Such resources
may be scoped to the application instance or may be shareable. An application may define a
dependency upon such resources in its environment by means of resource definition metadata.

The specification of resource definition metadata provides information that can be used at the
application’s deployment to provision and configure the required resource. Further, resource

105

definitions allow an application to be deployed into a Jakarta EE environment with more minimal
administrative configuration.

Resources may be defined in any of the JNDI namespaces described in Application Component
Environment Namespaces. For example, a resource may be defined:

in the java:comp namespace, for use by a single component;

• in the java:module namespace, for use by all components in a module;

• in the java:app namespace, for use by all components in an application;

• in the java:global namespace, for use by all applications.

The following annotations (and corresponding XML deployment descriptor elements) define
resources: AdministeredObjectDefinition, ConnectionFactoryDefinition, ContextServiceDefinition,
DataSourceDefinition, JMSConnectionFactoryDefinition, JMSDestinationDefinition,
MailSessionDefinition, ManagedExecutorDefinition, ManagedScheduledExecutorDefinition, and
ManagedThreadFactoryDefinition.

Once defined, a resource may be referenced by a component using the lookup element of the
Resource annotation or the lookup-name element of the resource-ref deployment descriptor element
in order to bind the logical reference to the resource as referenced in the application code to the
resource defined in the environment.

The specificity of the resource definition elements as provided by the Application Component
Provider may vary according to the needs of the application. For example:

• An application may require an instance of a resource, but its needs may be general in that while
it requires a resource with certain properties, it does not require a particular instance of the
resource. It may expect the resource to be provisioned and configured for it by the Deployer or
System Administrator.

• An application may require a particular instance of a resource (with specific configuration
properties) that already exists. For example, the resource may previously have been created
and configured by the Deployer or System Administrator.

The values specified for required annotation elements (and corresponding XML deployment
descriptor elements) must be observed when the application is deployed. Changing a value that has
been specified for some optional elements (e.g., transactional) may cause the application to work
incorrectly. Changing a value that has been specified for an optional element related to quality of
service (e.g., pool size, idle time, etc.) may affect the performance of the application.

The following default values used in the DataSourceDefinition, JMSConnectionFactoryDefinition,
JMSDestinationDefinition, MailSessionDefinition, and ConnectionFactoryDefinition annotations
indicate that an element value is optional and has not been set:

• integer-valued elements: -1

• string-valued elements: “”

• array-valued elements: {}

106

5.18.1. Guidelines

The following guidelines should be observed with regard to the specification of values for resource
definition elements.

• In general, the Application Component Provider or Assembler should specify values for
elements which, if changed, would cause the application to break—for example, JNDI name,
isolation level. If multiple resource definitions are specified for a given resource, they must be
consistent.

• The Jakarta EE Product Provider may choose suitable server-specific default values for optional
elements for which values have not been specified.

5.18.2. Requirements Common to All Resource Definition Types

The following requirements apply to the resource definitions described in Sections DataSource
Resource Definition through Connector Administered Object Definition.

When an Application Component Provider or Application Assembler specifies connectivity
information to a “physical” resource through a resource definition annotation or deployment
descriptor element, it is assumed that the physical resource exists. The automatic provisioning of
resources may be supported by an implementation of this specification, but support for this
functionality is not required. If automatic provisioning of resources is not supported, it is the
Deployer’s responsibility (possibly in conjunction with the System Administrator) to insure that the
physical resource is provisioned for use by the application.

5.18.2.1. JNDI Name

The Deployer and Jakarta EE Product Provider must not alter the specified JNDI name. The
requested resource must be made available in JNDI under the specified name.

5.18.2.2. Resource Address

If the Application Component Provider or Application Assembler has specified an address for a
resource (server name, port, etc.), a resource at the specified location should already exist. If it does
not, and if the automatic provisioning of resources is not supported, it is the Deployer’s
responsibility (possibly in conjunction with the System Administrator) to insure that the resource is
provisioned for use by the application.[10]

If the resource has not been otherwise provisioned and if automatic provisioning of resources is
supported, the Jakarta EE Product Provider is responsible for provisioning the resource. If the
requested resource cannot be made available or created, the application must fail to deploy.

5.18.2.3. Quality of Service Elements

Quality of service elements may be altered by the Deployer. The Jakarta EE Product Provider is
permitted to impose restrictions upon quality of service elements in accordance with its
implementation limits and quality of service guarantees. If quality of service values that have been
specified do not meet these restrictions, the Product Provider must not reject the deployment (but
must instead use appropriate values).

107

5.18.2.4. Properties

All resource definition annotations and XML elements support the use of property elements
(elements named “properties” or “property”). A Jakarta EE Product Provider is permitted to reject a
deployment if a property that it recognizes has a value that it does not support. A Jakarta EE
Product Provider must not reject a deployment on the basis of a property that it does not recognize.

5.18.3. DataSource Resource Definition

An application may define a DataSource resource. A DataSource resource is used to access a
database using a JDBC driver.

The DataSource resource may be defined in any of the JNDI namespaces described in Application
Component Environment Namespaces.

A DataSource resource may be defined in a web module, enterprise bean module, application client
module, or application deployment descriptor using the data-source element.

For example:

...
<data-source>
 <description>Sample DataSource definition</description>
 <name>java:app/MyDataSource</name>
 <class-name>com.example.MyDataSource</class-name>
 <server-name>myserver.com</server-name>
 <port-number>6689</port-number>
 <database-name>myDatabase</database-name>
 <user>lance</user>
 <password>secret</password>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
 <login-timeout>0</login-timeout>
 <transactional>false</transactional>
 <isolation-level>TRANSACTION_READ_COMMITTED</isolation-level>
 <initial-pool-size>0</initial-pool-size>
 <max-pool-size>30</max-pool-size>
 <min-pool-size>20</min-pool-size>
 <max-idle-time>0</max-idle-time>
 <max-statements>50</max-statements>
</data-source>
...

A DataSource resource may also be defined using the DataSourceDefinition annotation on a

108

container-managed class, such as a servlet or enterprise bean class.

For example:

 @DataSourceDefinition(
 name="java:app/MyDataSource",
 className="com.example.MyDataSource",
 portNumber=6689,
 serverName="myserver.com",
 user="lance",
 password="secret")

(Of course, we do not recommend including passwords to production systems in the code, but it’s
often useful while testing. Passwords, or other parts of the DataSource definition, can be
overridden by a deployment descriptor when the application is deployed.)

Once defined, a DataSource resource may be referenced by a component using the resource-ref
deployment descriptor element or the Resource annotation. For example, the above DataSource
could be referenced as follows:

 @Stateless
 public class MySessionBean {
 @Resource(lookup = "java:app/MyDataSource")
 DataSource myDB;
 ...
 }

The following DataSourceDefinition annotation elements (and corresponding XML deployment
descriptor elements) are considered to specify an address for a DataSource resource: serverName,
portNumber, databaseName, url.

The following DataSourceDefinition annotation elements (and corresponding XML deployment
descriptor elements) are considered to be quality of service elements: loginTimeout, initialPoolSize,
maxPoolSize, minPoolSize, maxIdleTime, maxStatements.

5.18.3.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of a DataSource resource
using a DataSourceDefinition annotation or the data-source deployment descriptor element.

If the database has been previously provisioned for the application (e.g., by administrative action),
it is the responsibility of the Application Component Provider to specify the class name of the data
source implementation class and the server and port at which the database is to be accessed.

A URL should not be specified in conjunction with address elements such as server name and port.
If it is, the precedence order is undefined and implementation specific.

109

5.18.3.2. Deployer’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types. The following additional requirements apply:

• If specified, user name and password should be used as specified.

• The transactional specification and isolation level must be used as specified.

5.18.3.3. Jakarta EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types. The following additional requirements apply:

• If a class name is specified, a resource with the specified implementation class (or a subclass)
must be provided. If the class name is specified as XADataSource, an XA datasource must be
provided.

• If an isolation level is specified, the Product Provider must satisfy the request or provide a
higher level of isolation. If the request cannot be satisfied, the Product Provider must reject the
deployment.

5.18.4. Jakarta Messaging Connection Factory Resource Definition

An application may define a Jakarta Messaging ConnectionFactory resource.

The Jakarta Messaging ConnectionFactory resource may be defined in any of the JNDI namespaces
described in Application Component Environment Namespaces.

A Jakarta Messaging ConnectionFactory resource may be defined in a web module, enterprise bean
module, application client module, or application deployment descriptor using the jms-connection-
factory element.

For example:

...
<jms-connection-factory>
 <description>
 Sample Jakarta Messaging ConnectionFactory definition
 </description>
 <name>java:app/MyJMSCF</name>
 <interface-name>
 jakarta.jms.QueueConnectionFactory
 </interface-name>
 <resource-adapter>myJMSRA</resource-adapter>
 <user>scott</user>
 <password>secret</password>
 <client-id>MyId</client-id>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>

110

 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
 <transactional>false</transactional>
 <max-pool-size>30</max-pool-size>
 <min-pool-size>20</min-pool-size>
</jms-connection-factory>
...

A Jakarta Messaging ConnectionFactory resource may also be defined using the
JMSConnectionFactoryDefinition annotation on a container-managed class, such as a servlet or
enterprise bean class.

For example:

 @JMSConnectionFactoryDefinition(
 name="java:app/MyJMSCF",
 interfaceName="jakarta.jms.QueueConnectionFactory",
 resourceAdapter="myJMSRA")

(As with the DataSource definition, we do not recommend including passwords to production
systems in the code, but it’s often useful while testing. Passwords, or other parts of the
JMSConnectionFactoryDefinition annotation, can be overridden by a deployment descriptor when
the application is deployed.)

Once defined, a Jakarta Messaging ConnectionFactory resource may be referenced by a component
using the resource-ref deployment descriptor element or the Resource annotation. For example, the
above Jakarta Messaging ConnectionFactory could be referenced as follows:

 @Stateless_
 public class MySessionBean {
 @Resource(lookup = "java:app/MyJMSCF")
 ConnectionFactory myCF;
 ...
 }

The following JMSConnectionFactoryDefinition annotation elements (and corresponding XML
deployment descriptor elements) are considered to specify an address for a Jakarta Messaging
ConnectionFactory resource: resourceAdapter.

The following JMSConnectionFactoryDefinition annotation elements (and corresponding XML
deployment descriptor elements) are considered to be quality of service elements: maxPoolSize,
minPoolSize.

111

5.18.4.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of a Jakarta Messaging
ConnectionFactory using a JMSConnectionFactoryDefinition annotation or the jms-connection-factory
deployment descriptor element.

5.18.4.2. Deployer’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types. The following additional requirements apply:

• A resource of the specified interface type (or of the default interface type, if not specified) must
be provided.

• If specified, user name and password should be used as specified.

• The transactional specification must be used as specified.

• If specified, the client id should be used as specified.

5.18.4.3. Jakarta EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types.

5.18.5. Jakarta Messaging Destination Definition

An application may define a Jakarta Messaging Destination resource. A Jakarta Messaging
Destination resource is a Jakarta Messaging Queue or Topic.

The Jakarta Messaging Destination resource may be defined in any of the JNDI namespaces
described in Application Component Environment Namespaces.

A Jakarta Messaging Destination resource may be defined in a web module, enterprise bean
module, application client module, or application deployment descriptor using the jms-destination
element.

For example:

...
<jms-destination>
 <description>Sample Jakarta Messaging Destination definition</description>
 <name>java:app/MyJMSDestination</name>
 <interface-name>jakarta.jms.Queue</interface-name>
 <resource-adapter>myJMSRA</resource-adapter>
 <destination-name>myQueue1</destination-name>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>

112

 <value>20</value>
 </property>
</jms-destination>
...

A Jakarta Messaging Destination resource may also be defined using the JMSDestinationDefinition
annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:

 @JMSDestinationDefinition(
 name="java:app/MyJMSQueue",
 interfaceName="jakarta.jms.Queue",
 destinationName="myQueue1")

The JMSDestinationDefinition annotation can be overridden by a deployment descriptor when the
application is deployed.

Once defined, a Jakarta Messaging Destination resource may be referenced by a component using
either the resource-env-ref or message-destination-ref deployment descriptor element or the
Resource annotation. For example, the above Destination could be referenced as follows:

 @Stateless
 public class MySessionBean {
 @Resource(lookup = "java:app/MyJMSQueue")
 Queue myQueue;
 ...
 }

The following JMSDestinationDefinition annotation elements (and corresponding XML deployment
descriptor elements) are considered to specify an address for a Jakarta Messaging Destination
resource: resourceAdapter, destinationName.

5.18.5.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of a Jakarta Messaging
Destination using a JMSDestinationDefinition annotation or the jms-destination deployment
descriptor element.

5.18.5.2. Deployer’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types. The following additional requirements apply:

A resource of the specified interface type must be provided.

113

5.18.5.3. Jakarta EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types.

5.18.6. Mail Session Definition

An application may define a Mail Session resource.

The Mail Session resource may be defined in any of the JNDI namespaces described in Application
Component Environment Namespaces.

A Mail Session resource may be defined in a web module, enterprise bean module, application
client module, or application deployment descriptor using the mail-session element.

For example:

...
<mail-session>
 <description>Sample Mail Session definition</description>
 <name>java:app/mail/MySession</name>
 <store-protocol>imap</store-protocol>
 <transport-protocol>smtp</transport-protocol>
 <host>somewhere.myco.com</host>
 <user>linda</user>
 <password>secret</password>
 <from>some.body@myco.com</from>
 <property>
 <name>mail.smtp.starttls.enable</name>
 <value>true</value>
 </property>
 <property>
 <name>mail.imap.connectiontimeout</name>
 <value>500</value>
 </property>
</mail-session>
...

A Mail Session resource may also be defined using the MailSessionDefinition annotation on a
container-managed class, such as a servlet or enterprise bean class.

For example:

 @MailSessionDefinition(_
 name="java:app/mail/MySession",
 host="somewhere.myco.com",
 from="some.body@myco.com")

The MailSessionDefinition annotation can be overridden by a deployment descriptor when the

114

application is deployed.

Once defined, a Mail Session resource may be referenced by a component using the resource-ref
deployment descriptor element or the Resource annotation. For example, the above Destination
could be referenced as follows:

 @Stateless
 public class MySessionBean {
 @Resource(lookup = "java:app/mail/MySession")
 Session myMailSession;
 ...
 }

The following MailSessionDefinition annotation elements (and corresponding XML deployment
descriptor elements) are considered to specify an address for a Mail Session resource: host.

5.18.6.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of a Mail Session using a
MailSessionDefinition annotation or the mail-session deployment descriptor element.

If a mail server resource has been previously provisioned for the application (e.g., by
administrative action), it is the responsibility of the Application Component Provider to specify the
mail server host name.

5.18.6.2. Deployer’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types. The following additional requirements apply:

• If store protocol, store protocol class, transport protocol, or transport protocol class has been
specified, a resource with the specified property or properties should be provided.

• If specified, the user name and password should be used as specified.

• If specified, the from address should be used as specified.

5.18.6.3. Jakarta EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types.

5.18.7. Connector Connection Factory Definition

An application may define Connector connection factory resources.

The resource may be defined in any of the JNDI namespaces described in Application Component
Environment Namespaces.

A Connector connection factory resource may be defined in a web module, enterprise bean module,
or application deployment descriptor using the connection-factory element.

115

For example:

...
<connection-factory>
 <description>Sample Connector resource definition</description>
 <name>java:app/myConnectionFactory</name>
 <interface-name>
 com.eis.ConnectionFactory
 </interface-name>
 <resource-adapter>MyEISRA</resource-adapter>
 <max-pool-size>20</max-pool-size>
 <min-pool-size>10</min-pool-size>
 <transaction-support>XATransaction</transaction-support>
 <property>
 <name>Property1</name>
 <value>prop1val</value>
 </property>
 <property>
 <name>Property2</name>
 <value>prop2val</value>
 </property>
</connection-factory>
...

A Connector connection factory resource may also be defined using the ConnectionFactoryDefinition
annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:

 @ConnectionFactoryDefinition(
 name="java:app/myConnectionFactory",
 interfaceName="com.eis.ConnectionFactory",
 resourceAdapter="MyESRA")

The ConnectionFactoryDefinition annotation can be overridden by a deployment descriptor when
the application is deployed.

Once defined, a Connector connection factory resource may be referenced by a component using
the resource-ref deployment descriptor element or the Resource annotation. For example, the above
Connector connection factory resource could be referenced as follows:

 @Stateless
 public class MySessionBean {
 @Resource(lookup = "java:app/myConnectionFactory")
 ConnectionFactory myCF;
 ...
 }

116

5.18.7.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of a Connector connection
factory resource using a ConnectionFactoryDefinition annotation or the connection-factory
deployment descriptor element.

5.18.7.2. Deployer’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types. The following additional requirements apply:

• A resource of the specified type must be provided.

5.18.7.3. Jakarta EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types.

5.18.8. Connector Administered Object Definition

An application may define a Connector administered object resource. The administered object
resource may be defined in any of the JNDI namespaces described in Application Component
Environment Namespaces.

An administered object resource may be defined in a web module, enterprise bean module, or
application deployment descriptor using the administered-object element. Properties that are
specified are used in the configuration of the administered object, as described in the Connector
specification.

For example:

...
<administered-object>
 <description>Sample Admin Object definition</description>
 <name>java:app/MyAdminObject</name>
 <class-name>com.extraServices.AdminObject</class-name>
 <resource-adapter>myESRA</resource-adapter>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
</administered-object>
...

An administered object resource may also be defined using the AdministeredObjectDefinition
annotation on a container-managed class, such as a servlet or enterprise bean class.

117

For example:

@AdministeredObjectDefinition(
 name="java:app/myAdminObject",
 className="com.extraServices.AdminObject",
 resourceAdapter="myESRA")

The AdministeredObjectDefinition annotation can be overridden by a deployment descriptor when
the application is deployed.

Once defined, an administered object resource may be referenced by a component using the
resource-env-ref deployment descriptor element or the Resource annotation. For example, the above
administered object resource could be referenced as follows:

 @Stateless public class MySessionBean {
 @Resource(lookup="java:app/myAdminObject")
 AdminObject myAdminObject;
 ...
 }

5.18.8.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of an administered object
resource using an AdministeredObjectDefinition annotation or the administered-object deployment
descriptor element.

5.18.8.2. Deployer’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types. The following additional requirements apply:

If a class name is specified, an administered object resource of the specified class (or a subclass)
must be provided.

5.18.8.3. Jakarta EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types.

5.18.9. Concurrency Resource Definitions

An application may define ContextService, ManagedExecutorService,
ManagedScheduledExecutorService, and ManagedThreadFactory resources. These resources are
used to manage and perform context-aware asynchronous tasks.

These resources may be defined in any of the JNDI namespaces described in Application
Component Environment Namespaces unless a non-empty list of qualifiers is specified, in which
case java:global is not permitted.

118

These resources may be defined in a web module or application deployment descriptor using the
context-service, managed-executor, managed-scheduled-executor, or managed-thread-factory
element.

For example:

...
<context-service>
 <name>java:app/concurrent/MyContext</name>
 <cleared>Transaction</cleared>
 <propagated>Application</propagated>
 <propagated>Security</propagated>
 <unchanged>Remaining</unchanged>
</context-service>

<managed-executor>
 <name>java:app/concurrent/MaxAsync5</name>
 <context-service-ref>java:app/concurrent/MyContext</context-service-ref>
 <max-async>5</max-async>
</managed-executor>
...

Concurrency resources may also be defined using the following resource definition annotations:
ContextServiceDefinition, ManagedExecutorDefinition, ManagedScheduledExecutorDefinition,
ManagedThreadFactoryDefinition. These annotations must reside on a container-managed class,
such as a Servlet, CDI bean, Jakarta REST resource, etc.

If any of these annotations specifies one or more qualifiers, then the class on which the annotation
resides must also be a CDI managed bean.

For example:

 @ContextServiceDefinition(
 name = "java:app/concurrent/AppContextOnly",
 cleared = { TRANSACTION, SECURITY },
 propagated = APPLICATION,
 unchanged = ALL_REMAINING)

 @ManagedExecutorDefinition(
 name = "java:app/concurrent/MaxAsync10",
 context = "java:app/concurrent/AppContextOnly",
 qualifiers = MaxAsync10.class,
 maxAsync = 10)

Once defined, Concurrency resources may be referenced by a component using the resource-ref
deployment descriptor element or the Resource annotation. For example, the above
ManagedExecutorService could be referenced as follows:

119

 @Stateless
 public class MySessionBean {
 @Resource(lookup = "java:app/concurrent/MaxAsync10")
 ManagedExecutorService maxAsync10Executor;
 ...
 }

Alternatively, if qualifiers are included, the resource can be injected into CDI beans. For example:

 @ApplicationScoped
 public class MyBean {
 @Inject
 @MaxAsync10
 ManagedExecutorService maxAsync10Executor;
 ...
 }

5.18.9.1. Application Component Provider’s Responsibilities

For each row in the table, the Application Component Provider is responsible for the definition of
the named resource using the corresponding annotation and the corresponding deployment
descriptor element.

Name of the resource Corresponding annotation
name

corresponding deployment
descriptor element

ContextService ContextServiceDefinition context-service

ManagedExecutorService ManagedExecutorDefinition managed-executor

ManagedScheduledExecutorServ
ice

ManagedScheduledExecutorDefi
nition

managed-scheduled-executor

ManagedThreadFactory ManagedThreadFactoryDefinitio
n

managed-thread-factory

If a qualifier class or class name is specified, a qualifier with the specified class must be provided
by the application.

5.18.9.2. Deployer’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types.

5.18.9.3. Jakarta EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Requirements Common to
All Resource Definition Types.

120

5.19. Default Data Source
The Jakarta EE Platform requires that a Jakarta EE Product Provider provide a database in the
operational environment (see Database). The Jakarta EE Product Provider must also provide a
preconfigured, default data source for use by the application in accessing this database.

The Jakarta EE Product Provider must make the default data source accessible to the application
under the JNDI name java:comp/DefaultDataSource.

The Application Component Provider or Application Assembler may explicitly bind a DataSource
resource reference to the default data source using the lookup element of the Resource annotation
or the lookup-name element of the resource-ref deployment descriptor element. For example,

@Resource(lookup="java:comp/DefaultDataSource")
DataSource myDS;

In the absence of such a binding, or an equivalent product-specific binding, the mapping of the
reference will default to the product’s default data source.

For example, the following will map to a preconfigured data source for the product’s default
database:

@Resource
DataSource myDS;

5.19.1. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider must provide a database in the operational environment. The
Jakarta EE Product Provider must also provide a preconfigured, default data source for use by the
application in accessing this database under the JNDI name java:comp/DefaultDataSource.

If a DataSource resource reference is not mapped to a specific data source by the Application
Component Provider, Application Assembler, or Deployer, it must be mapped by the Jakarta EE
Product Provider to a preconfigured data source for the Jakarta EE Product Provider’s default
database.

5.20. Default Jakarta Messaging Connection Factory
The Jakarta EE Platform requires that a Jakarta EE Product Provider provide a Jakarta Messaging
provider in the operational environment (see Jakarta™ Message Service (Jakarta Messaging)). The
Jakarta EE Product Provider must also provide a preconfigured, Jakarta Messaging
ConnectionFactory for use by the application in accessing this Jakarta Messaging provider.

The Jakarta EE Product Provider must make the default Jakarta Messaging connection factory
accessible to the application under the JNDI name java:comp/DefaultJMSConnectionFactory.

The Application Component Provider or Application Assembler may explicitly bind a Jakarta

121

Messaging ConnectionFactory resource reference to the default connection factory using the lookup
element of the Resource annotation or the lookup-name element of the resource-ref deployment
descriptor element. For example,

@Resource(name="myJMSCF",
 lookup="java:comp/DefaultJMSConnectionFactory")
ConnectionFactory myJMScf;

In the absence of such a binding, or an equivalent product-specific binding, the mapping of the
reference will default to a Jakarta Messaging connection factory for the product’s Jakarta
Messaging provider.

For example, the following will map to a preconfigured connection factory for the product’s default
Jakarta Messaging provider:

@Resource(name="myJMSCF")
ConnectionFactory myJMScf;

5.20.1. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider must provide a Jakarta Messaging provider in the operational
environment. The Jakarta EE Product Provider must also provide a preconfigured, default Jakarta
Messaging connection factory for use by the application in accessing this provider under the JNDI
name java:comp/DefaultJMSConnectionFactory.

If a Jakarta Messaging ConnectionFactory resource reference is not mapped to a specific Jakarta
Messaging connection factory by the Application Component Provider, Application Assembler, or
Deployer, it must be mapped by the Jakarta EE Product Provider to a preconfigured Jakarta
Messaging connection factory for the Jakarta EE Product Provider’s default Jakarta Messaging
provider.

5.21. Default Jakarta Concurrency Objects
The Jakarta EE Platform requires that a Jakarta EE Product Provider provide a preconfigured
default managed executor service, a preconfigured default managed scheduled executor service, a
preconfigured default managed thread factory, and a preconfigured default context service for use
by the application.

The Jakarta EE Product Provider must make the default Jakarta Concurrency objects accessible to
the application under the following JNDI names:

• java:comp/DefaultManagedExecutorService for the preconfigured managed executor service

• java:comp/DefaultManagedScheduledExecutorService for the preconfigured managed scheduled
executor service

• java:comp/DefaultManagedThreadFactory for the preconfigured managed thread factory

122

• java:comp/DefaultContextService for the preconfigured context service

The Application Component Provider or Application Assembler may explicitly bind a resource
reference to a default Jakarta Concurrency object using the lookup element of the Resource
annotation or the lookup-name element of the resource-ref deployment descriptor element. For
example,

@Resource(name="myManagedExecutorService",
 lookup="java:comp/DefaultManagedExecutorService")
ManagedExecutorService myManagedExecutorService;

In the absence of such a binding, or an equivalent product-specific binding, the mapping of the
reference will default to the product’s default managed executor service.

For example, the following will map to a preconfigured default managed executor service for the
product:

@Resource(name="myManagedExecutorService")
ManagedExecutorService myManagedExecutorService;

5.21.1. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider must provide the following:

• a preconfigured, default managed executor service for use by the application in accessing this
service under the JNDI name java:comp/DefaultManagedExecutorService ;

• a preconfigured, default managed scheduled executor service for use by the application in
accessing this service under the JNDI name java:comp/DefaultManagedScheduledExecutorService
;

• a preconfigured, default managed thread factory for use by the application in accessing this
factory under the JNDI name java:comp/DefaultManagedThreadFactory ;

• a preconfigured, default context service for use by the application in accessing this service
under the JNDI name java:comp/DefaultContextService.

If a Jakarta Concurrency object resource environment reference is not mapped to a specific
configured object by the Application Component Provider, Application Assembler, or Deployer, it
must be mapped by the Jakarta EE Product Provider to a preconfigured Jakarta Concurrency object
for the Jakarta EE Product Provider.

5.22. CDI Managed Bean References
This section describes the metadata annotations and deployment descriptor entries that allow an
application to obtain instances of a CDI Managed Bean.

An instance of a named CDI Managed Bean can be obtained by looking up its name in JNDI using
the same naming scheme used for Jakarta Enterprise Beans components:

123

java:app/<module-name>/<bean-name>

java:module/<bean-name>

The latter will only work within the module the CDI Managed Bean is declared in.

Each such lookup must return a new instance.

Alternatively, the Resource annotation can be used to request the injection of a CDI Managed Bean
given either its type or its name. If a name is specified using the lookup element then the type of the
resource can be any of the types that the CDI Managed Bean class implements, including any of its
interfaces. If no name is specified, the type must be the CDI Managed Bean class itself. (Note that
the name element of the Resource annotation serves an entirely different purpose than the lookup
element, consistently with other uses of Resource in this specification.) The authenticationType and
shareable elements of the Resource annotation must not be specified.

For example, given a ShoppingCartBean bean named “cart” defined in the same module as the
client code and implementing the ShoppingCart interface, a client may use any of the following
methods to obtain an instance of the bean class:

@Resource ShoppingCartBean cart;

@Resource(lookup="java:module/cart") ShoppingCart cart;

ShoppingCart cart = (ShoppingCart) context.lookup("java:module/cart");

References to managed beans can be declared in the deployment descriptor using the resource-ref
element. The res-type element must contain a type that the managed bean implements. The lookup-
name must be present and refer to a managed bean by name. The res-sharing-scope and res-auth
elements may be omitted; if present, they must have the values Shareable and Container
respectively, so as to match the default values of the corresponding elements of the Resource
annotation.

The following example shows how to declare references to the shopping cart bean of the previous
example, this time using descriptors. (To make the example somewhat more realistic, one should
add an injection-target child element to resource-ref.)

...
<resource-ref>
 <res-ref-name>bean/cart</ref-ref-name>
 <ref-type>com.acme.ShoppingCart</ref-type>
 <lookup-name>java:module/cart</lookup-name>
</resource-ref>
...

124

5.22.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a CDI Managed Bean
or for looking it up in JNDI using an appropriate name.

5.22.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for providing appropriate instances of the requested
CDI Managed Bean class as required by this specification.

5.23. Bean Manager References
This section describes the metadata annotations and deployment descriptor entries that allow an
application to obtain instances of the CDI BeanManager type.

Typically, only portable extensions using the CDI SPI need to access a BeanManager. Application
code may occasionally require access to that interface; in that case, the application should either
look up a BeanManager instance in JNDI under the name java:comp/BeanManager, or request the
injection of an object of type jakarta.enterprise.inject.spi.BeanManager via the Resource annotation.
If the latter, the authenticationType and shareable elements of the Resource annotation must not be
specified.

@Resource BeanManager manager;

Per the CDI specification, a bean can also request the injection of a BeanManager using the Inject
annotation.

@Inject BeanManager manager;

A BeanManager object reference may also be declared in a deployment descriptor in the same way
as a resource environment reference.

5.23.1. Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a BeanManager
instance using a Resource annotation, or using the defined name to look up an instance in JNDI.

5.23.2. Jakarta EE Product Provider’s Responsibilities

The Jakarta EE Product Provider is responsible for providing appropriate BeanManager instances
as required by this specification.

5.24. Support for Dependency Injection
In Jakarta EE, support for dependency injection annotations as specified in the Dependency
Injection for Java specification is mediated by CDI. Containers must support injection points

125

annotated with the jakarta.inject.Inject annotation only to the extent dictated by CDI.

Per the CDI specification, dependency injection is supported on managed beans. There are
currently three ways for a class to become a managed bean:

1. Being a Jakarta Enterprise Beans session bean component.

2. Satisfying the conditions described in the CDI specification.

Classes that satisfy at least one of these conditions will be eligible for full dependency injection
support as described in the CDI specification.

Component classes listed in Component classes supporting injection that satisfy the third condition
above, but neither the first nor the second condition, can also be used as CDI managed beans if they
are annotated with a CDI bean-defining annotation or contained in a bean archive for which CDI is
enabled. However, if they are used as CDI managed beans (e.g., injected into other managed
classes), the instances that are managed by CDI may not be the instances that are managed by the
Jakarta EE container.

Therefore, to make injection support more uniform across all Jakarta EE component types, Jakarta
EE containers are required to support field, method, and constructor injection using the
jakarta.inject.Inject annotation into all component classes listed in Component classes supporting
injection as having the “Standard” level of injection support, as well as the use of interceptors for
these classes. Such injection must be performed in the same logical phase as resource injection of
fields and methods annotated with the Resource annotation. In particular, dependency injection
must precede the invocation of any methods annotated with the PostConstruct annotation. In
supporting such injection points, the container must behave as if it carried out the following steps,
involving the use of the CDI SPI. Note that using these steps causes the container to create a non-
contextual instance, which is not managed by CDI but rather by the Jakarta EE container.

1. Obtain a BeanManager instance.

2. Create an AnnotatedType instance for the component into which injection is to occur.

3. Create an InjectionTarget instance for the annotated type.

4. Create a CreationalContext, passing in null to the BeanManager createCreationalContext method.

5. Instantiate the component by calling the InjectionTarget produce method.

6. Inject the component instance by calling the InjectionTarget inject method on the instance.

7. Invoke the PostConstruct callback, if any, by calling the InjectionTarget postConstruct method on
the instance.

When such a non-contextual instance is to be destroyed, the container should behave as if it carried
out the following steps.

1. Invoke the PreDestroy callback, if any, by calling the InjectionTarget preDestroy method on the
instance.

2. Invoke the InjectionTarget dispose method on the instance.

3. Invoke the CreationalContext release method to destroy any dependent objects of the instance.

126

Containers may optimize the steps above, e.g., by avoiding calls to the actual CDI SPI and relying on
container-specific interfaces instead, as long as the outcome is the same.

[1] Note that CDI Managed Beans are required to have access to the JNDI naming environment of their calling component.

[2] Note that the use of interceptors defined by means of the Interceptors annotation is supported in the absence of CDI for
Jakarta™ Enterprise Beans and Jakarta™ Managed Bean components.

[3] See the Jakarta™ Server Faces specification section Jakarta™ Server Faces Managed Classes and Jakarta™ Annotations” for a list
of these managed classes.

[4] Resource and CDI injection is supported only in Jakarta™ RESTful Web Services components managed by CDI.

[5] Interceptors cannot be bound to other interceptors.

[6] See the CDI specification for requirements related to resource injection in CDI managed beans.

[7] We use this term to refer to classes that become managed beans per the rules in the CDI specification, thus excluding managed
beans declared using Jakarta™ Enterprise Beans session beans, which would be managed bean even in the absence of CDI.

[8] Interceptors cannot be bound to decorators.

[9] Connections obtained from the same resource manager connection factory through a different resource manager connection
factory reference may be shareable.

[10] Note that the Deployer is not prohibited from overriding the resource address.

127

Chapter 6. Application Programming
Interface
This chapter describes API requirements for the Jakarta™ Platform, Enterprise Edition (Jakarta EE).
Jakarta EE requires the provision of a number of APIs for use by Jakarta EE applications, starting
with the core Java APIs and including many additional Java technologies.

6.1. Required APIs
Jakarta EE application components execute in runtime environments provided by the containers
that are a part of the Jakarta EE platform. The full Jakarta EE platform supports three types of
containers corresponding to Jakarta EE application component types: application client containers;
web containers for servlets, Jakarta Server Pages, Jakarta Server Faces applications, Jakarta RESTful
Web Services applications; and enterprise bean containers. A Jakarta EE profile may support only a
subset of these component types, as defined by the individual Jakarta EE profile specification.

The per-technology requirements in this chapter apply to any Jakarta EE product that includes the
technology. Note that even though a Jakarta EE profile might not require support for a particular
technology, a Jakarta EE product based on that Jakarta EE profile might nonetheless include
support for the technology. In such a case, the requirements for that technology described in this
chapter would apply.

6.1.1. Java Compatible APIs

The containers provide all application components with at least the Java Platform, Standard
Edition, v11 (Java SE) APIs. Containers may provide newer versions of the Java SE platform,
provided they meet all the Jakarta EE platform requirements as outlined below.

6.1.1.1. Java SE Enterprise Technologies

The Java SE 17 platform includes a number of enterprise technologies. Except for technologies
noted in this specification as being optional, containers must provide all application components
with the APIs associated with these technologies. If a newer version of the Java SE platform
provided by a container has removed some of these technologies, the container must provide these
technologies in some other manner.

The Java SE 17 platform includes the following enterprise technologies:

• Java IDL [1]

• JDBC

• RMI-JRMP

• javax.rmi.PortableRemoteObject [2]

• JNDI

• JAXP

• StAX

128

• JAAS

• JMX

• JAX-WS [3]

• JAXB [3]

• JAF [4]

• SAAJ [3]

• Common Annotations [4]

Note that a number of the enterprise technologies provided by Java SE 8 are now provided by
Jakarta EE specifications and are included in the list of Required Jakarta Technologies.

The specifications for the Java SE APIs are available at https://docs.oracle.com/javase/17/docs/ .

6.1.1.2. Java Module Names

Java™ SE 9 introduced the concept of a modularity system, known as the Java Platform Module
System (JPMS). Defined modules need a name to allow for references by other modules. Jakarta EE
10 does not define a module naming convention. However, some Java EE™ 8 and Jakarta EE
features had already defined their corresponding module names. Due to these previous module
naming efforts, the following guidelines are strongly suggested for Jakarta EE 9:

• If an Automatic Module Name (MANIFEST) already exists, update the name to use the ‘jakarta’
prefix to be consistent with the package rename requirement. Do not create new Automatic
Module Names for Jakarta EE 9.

• If a module-info.class already exists, update the name to use the ‘jakarta’ prefix to be consistent
with the package rename requirement. Do not create new module-info.class files for Jakarta EE
9.

• If neither Automatic Module Names or module-info.class exists, then leave as-is.

These guidelines allow existing module names to get to a consistent state with the least amount of
disruption. Any existing module names may need to be updated once specific module name
requirements are established in a future release.

6.1.2. Required Jakarta Technologies

The full Jakarta EE platform also provides a number of technologies in each of the containers
defined by this specification. Jakarta EE Technologies indicates the required technologies. Each
Jakarta EE profile specification will include a similar table describing which technologies are
required for the profile. Note that some technologies are marked Optional, as described in the next
section. Please see the table in the section Application Programming Interface for the specific
versions required for each component.

Note: Jakarta EE 9 introduced the concept of "removed" technologies. This is the final stage of a
technology’s lifecycle where the technology is officially removed from the Jakarta EE Platform. This
is a stronger statement than making a technology "optional", since a "removed" technology will no
longer be maintained for future versions of the Platform. Removed Jakarta Technologies documents

129

https://docs.oracle.com/javase/17/docs/

these removed technologies.

Table 2. Jakarta EE Technologies

Jakarta EE
Technology

App Client Web Enterprise Beans Activation

Y Y Y Authorization N

Y Y Authentication N Y

Y Batch N Y Y

Validation Y Y Y Annotations

Y Y Y Concurrency N

Y Y Connectors N Y

Y Contexts and
Dependency
Injection

Y Y Y

Dependency
Injection

Y Y Y Debugging
Support for Other
Languages

N Y N Expression
Language

N

Y N Interceptors Y Y

Y JSON Processing Y Y Y

JSON Binding Y Y Y Mail

Y Y Y Managed Beans
(Deprecated)

Y

Y Y Messaging Y Y

Y Persistence Y Y Y

RESTful Web
Services

N Y N Security

N Y Y Servlet N

Y N Server Faces N Y

N Server Pages N Y N

Standard Tag
Library

N Y N Transactions

N Y Y WebSocket N

All classes and interfaces required by the specifications for the APIs must be provided by the
Jakarta EE containers indicated above. In some cases, a Jakarta EE product is not required to
provide objects that implement interfaces intended to be implemented by an application server,
nevertheless, the definitions of such interfaces must be included in the Jakarta EE platform. If an

130

implementation includes support for a technology marked as Optional, that technology must be
supported in the containers specified above. If a product implementation does not support a
technology marked as Optional, it must not include the APIs for that technology.[5]

If a container supports Java SE 17 or a newer version of the Java SE platform, than all classes and
interfaces provided by the container to satisfy the platform requirements listed above, must be
compiled with the Java SE 17 source and class level.

6.1.3. Platform Prospective Specifications

During the development cycle for the current version of the Jakarta EE specification, the platform
project considered several component specifications for inclusion in the platform. A consensus
could not be reached on including these specifications in the platform. These specifications are
considered as prospects for inclusion in a future version of the Platform specification.

• Jakarta MVC

6.1.4. Optional Jakarta Technologies

As the Jakarta EE specification has evolved, some of the technologies originally included in Jakarta
EE are no longer as relevant as they were when they were introduced to the platform. The Jakarta
EE Platform Specification Project follows a process similar to the one first defined by the Java SE
expert group (https://mreinhold.org/blog/removing-features) to stabilize and remove technologies
from the platform in a careful and orderly way that minimizes the impact to developers using these
technologies, while allowing the platform to grow even stronger.

An individual specification can have optional features. However when a component specification is
included in the Platform, Web Profile, and Core Profile, an optional feature must be explicitly
declared as required, otherwise it is not required. For complete normative details, see Jakarta EE
Specification Versioning, Change, and Deprecation Process.

6.1.5. Removed Jakarta Technologies

Jakarta EE 9 introduced the concept of "removed" technologies. This is the final stage of a
technology’s lifecycle where the technology is officially removed from the Jakarta EE Platform. This
is a stronger statement than making a technology "optional", since a "removed" technology will no
longer be maintained for future versions of the Platform.

The following Jakarta EE Technologies were removed from the Jakarta EE Platform.

Table 3. Jakarta EE Technologies

Jakarta EE Technology Status

Embeddable EJB Container (Jakarta Enterprise
Beans, Core Features 4.0, Chapter 17)

Removed in Jakarta EE 10

Entity Beans, both Container and Bean Managed
Persistence (Jakarta Enterprise Beans 4.0,
Optional Features, Chapters 3 - 7)

Removed in Jakarta EE 10

131

https://jakarta.ee/specifications/mvc/
https://mreinhold.org/blog/removing-features
https://jakarta.ee/committees/specification/versioning/#allowedchanges
https://jakarta.ee/committees/specification/versioning/#allowedchanges

Jakarta EE Technology Status

Enterprise Web Services Removed in Jakarta EE 11

SOAP with Attachments Removed in Jakarta EE 11

XML Binding Removed in Jakarta EE 11

XML Web Services Removed in Jakarta EE 11

6.2. Java Platform, Standard Edition (Java SE)
Requirements

6.2.1. Programming Restrictions

The Jakarta EE programming model divides responsibilities between Application Component
Providers and Jakarta EE Product Providers: Application Component Providers focus on writing
business logic and the Jakarta EE Product Providers focus on providing a managed system
infrastructure in which the application components can be deployed.

This division leads to a restriction on the functionality that application components can contain. If
application components contain the same functionality provided by Jakarta EE system
infrastructure, there are clashes and mis-management of the functionality.

For example, if enterprise beans were allowed to manage threads, the Jakarta EE platform could
not manage the life cycle of the enterprise beans, and it could not properly manage transactions.

6.2.2. Jakarta EE Security Manager Related Requirements

The Jakarta EE 11 release removes the requirement to use a Java security manager.

6.2.3. Additional Requirements

6.2.3.1. Networking

The Java SE platform includes a pluggable mechanism for supporting multiple URL protocols
through the java.net.URLStreamHandler class and the java.net.URLStreamHandlerFactory interface.

The following URL protocols must be supported:

• file : Only reading from a file URL need be supported. That is, the corresponding URLConnection
object’s getOutputStream method may fail with an UnknownServiceException . File access is
restricted according to the permissions described above.

• http : Version 1.1 of the HTTP protocol must be supported. An http URL must support both input
and output.

• https : SSL version 3.0 and TLS version 1.2 must be supported by https URL objects. Both input
and output must be supported.

The Java SE platform also includes a mechanism for converting a URL’s byte stream to an
appropriate object, using the java.net.ContentHandler class and java.net.ContentHandlerFactory

132

interface. A ContentHandler object can convert a MIME byte stream to an object. ContentHandler
objects are typically accessed indirectly using the getContent method of URL and URLConnection .

When accessing data of the following MIME types using the getContent method, objects of the
corresponding Java type listed in Java Type of Objects Returned When Using the getContent Method
must be returned.

Table 4. Java Type of Objects Returned When Using the getContent Method

MIME Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

image/png java.awt.Image

Many environments will use HTTP proxies rather than connecting directly to HTTP servers. If HTTP
proxies are being used in the local environment, the HTTP support in the Java SE platform should
be configured to use the proxy appropriately. Application components must not be required to
configure proxy support in order to use an http URL.

Most enterprise environments will include a firewall that limits access from the internal network
(intranet) to the public Internet, and vice versa. It is typical for access using the HTTP protocol to
pass through such firewalls, perhaps by using proxy servers. It is not typical that general TCP/IP
traffic, including RMI-JRMP, and RMI-IIOP, can pass through firewalls.

These considerations have implications on the use of various protocols to communicate between
application components. This specification requires that HTTP access through firewalls be possible
where local policy allows. Some Jakarta EE products may provide support for tunneling other
communication through firewalls, but this is neither specified nor required. Application developers
should consider the impact of these issues in the design of applications, particularly in view of
cloud environments, where a cloud platform provider might only allow HTTP-based access.

6.2.3.2. JDBC™ API

The JDBC API, which is part of the Java SE platform, allows for access to a wide range of data
storage systems. The Java SE platform, however, does not require that a system meeting the Java
Compatible™ quality standards provide a database that is accessible through the JDBC API.

To allow for the development of portable applications, the Jakarta EE specification does require
that such a database be available and accessible from a Jakarta EE product through the JDBC API.
Such a database must be accessible from web components, enterprise beans, and application
clients. In addition, the driver for the database must meet the JDBC Compatible requirements in the
JDBC specification.

Jakarta EE applications should not attempt to load JDBC drivers directly. Instead, they should use
the technique recommended in the JDBC specification and perform a JNDI lookup to locate a
DataSource object. The JNDI name of the DataSource object should be chosen as described in
Resource Manager Connection Factory References. The Jakarta EE platform must be able to supply
a DataSource that does not require the application to supply any authentication information when
obtaining a database connection. Of course, applications may also supply a user name and

133

password when connecting to the database.

When a JDBC API connection is used in an enterprise bean , the transaction characteristics will
typically be controlled by the container. The component should not attempt to change the
transaction characteristics of the connection, commit the transaction, roll back the transaction, or
set autocommit mode. Attempts to make changes that are incompatible with the current
transaction context may result in a SQLException being thrown. The Jakarta Enterprise Beans
specification contains the precise rules for enterprise beans.

Note that the same restrictions apply when a component creates a transaction using the Jakarta
Transactions UserTransaction interface. The component should not attempt the operations listed
above on the JDBC Connection object that would conflict with the transaction context.

Drivers supporting the JDBC API in a Jakarta EE environment must meet the JDBC API Compliance
requirements as specified in the JDBC specification.

The JDBC API includes APIs for connection naming via JNDI, connection pooling, and distributed
transaction support. The connection pooling and distributed transaction features are intended for
use by JDBC drivers to coordinate with an application server. Jakarta EE products are not required
to support the application server facilities described by these APIs, although they may prove useful.

The Connector architecture defines an SPI that essentially extends the functionality of the JDBC SPI
with additional security functionality, and a full packaging and deployment functionality for
resource adapters. A Jakarta EE product that supports the Connector architecture must support
deploying and using a JDBC driver that has been written and packaged as a resource adapter using
the Connector architecture.

Every release of Jakarta EE declares a minimum required version of Java SE. For discussion, let this
be Java SE N. Compatible implementations of Jakarta EE must support the latest version of the JDBC
API mentioned in the Java SE N javadocs for the package java.sql. These javadocs typically have a
link to the corresponding specification at jcp.org.

6.2.3.3. RMI-JRMP

JRMP is the Java technology-specific Remote Method Invocation (RMI) protocol. The Jakarta EE
security restrictions typically prevent all application component types except application clients
from creating and exporting an RMI object, but all Jakarta EE application component types can be
clients of RMI objects.

6.2.3.4. RMI-IIOP

The RMI-IIOP subsystem is composed of APIs that allow for the use of RMI-style programming that
is independent of the underlying protocol. Implementations of these APIs may support the Java SE
native RMI protocol (JRMP), the CORBA IIOP protocol, or any custom protocol that is compatible
with the RMI programming restrictions.

The requirements in this section only apply to Jakarta EE products that include an
Enterprise Beans container with support for remote interfaces.

Jakarta EE applications use the RMI-IIOP APIs when accessing remote Enterprise Beans

134

components, as described in the Jakarta Enterprise Beans 4.0 specification. This allows Enterprise
Beans and their clients to be protocol independent and portable to Jakarta EE implementations that
may use CORBA/IIOP, RMI, or any other custom protocol.

Requirements for distributed interoperability over CORBA/IIOP have been removed in Jakarta
Enterprise Beans 4.0. Use of the narrow method of javax.rmi.PortableRemoteObject and references
to org.omg.ORB in the Platform are slated for removal in a future release.

Jakarta EE implementations may use CORBA/IIOP as their underlying protocol, however, such
support is implementation-specific and no longer a guarantee of the Jakarta EE platform.

6.2.3.5. JNDI

A Jakarta EE product that supports the following types of objects must be able to make them
available in the application’s JNDI namespace: EJBHome objects, EJBLocalHome objects, Enterprise
Beans business interface objects, Jakarta Transactions UserTransaction objects, JDBC API
DataSource objects, JMS ConnectionFactory and Destination objects, Jakarta Mail Session objects,
URL objects, resource manager ConnectionFactory objects (as specified in the Connector
specification), ORB objects, EntityManagerFactory objects, and other Java language objects as
described in Resources, Naming, and Injection. The JNDI implementation in a Jakarta EE product
must be capable of supporting all of these uses in a single application component using a single
JNDI InitialContext . Application components will generally create a JNDI InitialContext using the
default constructor with no arguments. The application component may then perform lookups on
that InitialContext to find objects as specified above.

The names used to perform lookups for Jakarta EE objects are application dependent. The
application component’s metadata annotations and/or deployment descriptor are used to list the
names and types of objects expected. The Deployer configures the JNDI namespace to make
appropriate components available. The JNDI names used to lookup such objects must be in the JNDI
java: namespace. See Resources, Naming, and Injection for details.

Particular names are defined by this specification for the cases when the Jakarta EE product
includes the corresponding technology. For all application components that have access to the
Jakarta Transaction UserTransaction interface, the appropriate UserTransaction object can be
found using the name java:comp/UserTransaction . In all containers, application components may
lookup a CORBA ORB instance using the name java:comp/ORB . For all application components that
have access to the CDI BeanManager interface, the appropriate BeanManager object can be found
using the name java:comp/BeanManager . For all application components that have access to the
Validation APIs, the appropriate Validator and ValidatorFactory objects can be found using the
names java:comp/Validator and java:comp/ValidatorFactory respectively.

The name used to lookup a particular Jakarta EE object may be different in different application
components. In general, JNDI names can not be meaningfully passed as arguments in remote calls
from one application component to another remote component (for example, in a call to an
enterprise bean).

The JNDI java: namespace is commonly implemented as symbolic links to other naming systems.
Different underlying naming services may be used to store different kinds of objects, or even
different instances of objects. It is up to a Jakarta EE product to provide the necessary JNDI service

135

providers for accessing the various objects defined in this specification.

This specification requires that the Jakarta EE platform provide the ability to perform lookup
operations as described above. Different JNDI service providers may provide different capabilities,
for instance, some service providers may provide only read-only access to the data in the name
service.

A Jakarta EE product may be required to provide a COSNaming name service to meet the Jakarta
Enterprise Beans interoperability requirements. In such a case, a COSNaming JNDI service provider
must be available through the web, Enterprise Beans, and application client containers.

A COSNaming JNDI service provider is a part of the Java SE 8 SDK and JRE from Oracle, but is not a
required component of the Java SE specification. The COSNaming JNDI service provider
specification is available at https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/jndi-cos.html .

See Resources, Naming, and Injection for the complete naming requirements for the Jakarta EE
platform. The JNDI specification is available at https://docs.oracle.com/javase/8/docs/technotes/
guides/jndi/index.html .

6.2.3.6. Context Class Loader

This specification requires that Jakarta EE containers provide a per thread context class loader for
the use of system or library classes in dynamically loading classes provided by the application. The
Jakarta Enterprise Beans specification requires that all Jakarta Enterprise Beans client containers
provide a per thread context class loader for dynamically loading system value classes. The per
thread context class loader is accessed using the Thread method getContextClassLoader .

The classes used by an application will typically be loaded by a hierarchy of class loaders. There
may be a top level application class loader, an extension class loader, and so on, down to a system
class loader. The top level application class loader delegates to the lower class loaders as needed.
Classes loaded by lower class loaders, such as portable Jakarta Enterprise Beans system value
classes, need to be able to discover the top level application class loader used to dynamically load
application classes.

This specification requires that containers provide a per thread context class loader that can be
used to load top level application classes as described above. See Dynamic Class Loading for
recommendations for libraries that dynamically load classes.

6.2.3.7. Jakarta Authentication Requirements

All enterprise beans containers and all web containers must support the use of the Jakarta
Authentication APIs as specified in the Connector specification. All application client containers
must support use of the Jakarta Authentication APIs.

The Jakarta Authentication specification is available at https://jakarta.ee/specifications/
authentication/ .

6.2.3.8. Logging API Requirements

The Logging API provides classes and interfaces in the java.util.logging package that are the Java™

136

https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/jndi-cos.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html
https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/authentication/

platform’s core logging facilities. This specification does not require any additional support for
logging. A Jakarta EE application typically will not have the LoggingPermission necessary to control
the logging configuration, but may use the logging API to produce log records. A future version of
this specification may require that the Jakarta EE containers use the logging API to log certain
events.

6.2.3.9. Preferences API Requirements

The Preferences API in the java.util.prefs package allows applications to store and retrieve user and
system preference and configuration data. A Jakarta EE application typically will not have the
RuntimePermission("preferences") necessary to use the Preferences API. This specification does not
define any relationship between the principal used by a Jakarta EE application and the user
preferences tree defined by the Preferences API. A future version of this specification may define
the use of the Preferences API by Jakarta EE applications.

6.3. Enterprise Beans 4.0 Requirements
This specification requires that a Jakarta EE product provide support for enterprise beans as
specified in the Jakarta Enterprise Beans specification. The Jakarta Enterprise Beans specification is
available at https://jakarta.ee/specifications/enterprise-beans/ .

A Jakarta EE product may support multiple object systems (for example, RMI-IIOP, RMI-JRMP, gRPC,
protobuf, Thrift). There is no explicit requirement that a Jakarta EE product support any specific
protocol, such as CORBA/IIOP, or provide distributed interoperability between products.

In a Jakarta EE product that includes both an enterprise beans container and a web container, both
containers are required to support access to local enterprise beans. No support is provided for
access to local enterprise beans from the application client container.

6.4. Servlet 6.1 Requirements
The Jakarta Servlet specification defines the packaging and deployment of web applications,
whether standalone or as part of a Jakarta EE application. The Servlet specification also addresses
security, both standalone and within the Jakarta EE platform. These optional components of the
Servlet specification are requirements of the Jakarta EE platform.

The Servlet specification includes additional requirements for web containers that are part of a
Jakarta EE product and a Jakarta EE product must meet these requirements as well.

The Servlet specification defines distributable web applications. To support Jakarta EE applications
that are distributable, this specification adds the following requirements.

Web containers must support Jakarta EE distributable web applications placing objects of any of
the following types (when supported by the Jakarta EE product) into a
jakarta.servlet.http.HttpSession object using the setAttribute or putValue methods:

• java.io.Serializable

• jakarta.ejb.EJBObject

137

https://jakarta.ee/specifications/enterprise-beans/

• jakarta.ejb.EJBHome

• jakarta.ejb.EJBLocalObject

• jakarta.ejb.EJBLocalHome

• jakarta.transaction.UserTransaction

• a javax.naming.Context object for the java:comp/env context

a reference to an Enterprise Bean local or remote business interface or no-interface view

Web containers may support objects of other types as well. Web containers must throw a
java.lang.IllegalArgumentException if an object that is not one of the above types, or another type
supported by the container, is passed to the setAttribute or putValue methods of an HttpSession
object corresponding to a Jakarta EE distributable session. This exception indicates to the
programmer that the web container does not support moving the object between VMs. A web
container that supports multi-VM operation must ensure that, when a session is moved from one
VM to another, all objects of supported types are accurately recreated on the target VM.

The Servlet specification defines access to local enterprise beans as an optional feature. This
specification requires that all Jakarta EE products that include both a web container and an
Enterprise Beans container provide support for access to local enterprise beans from the web
container.

The Jakarta Servlet specification is available at https://jakarta.ee/specifications/servlet/ .

6.5. Server Pages 4.0 Requirements
The Jakarta Server Pages specification depends on and builds on the servlet framework. A Jakarta
EE product must support the entire Jakarta Server Pages specification.

The Jakarta Server Pages specification is available at https://jakarta.ee/specifications/pages/ .

6.6. Expression Language (EL) 6.0 Requirements
The Jakarta Expression Language specification was formerly a part of the Jakarta Server Pages
specification. It was split off into its own specification so that it could be used independently of
Jakarta Server Pages. A Jakarta EE product must support the Expression Language.

The Jakarta Expression Language specification is available at https://jakarta.ee/specifications/
expression-language/ .

6.7. Messaging 3.1 Requirements
A Jakarta Messaging provider must be included in a Jakarta EE product that requires support for
Jakarta Messaging. The Jakarta Messaging implementation must provide support for both Jakarta
Messaging point-to-point and publish/subscribe messaging, and thus must make those facilities
available using the ConnectionFactory and Destination APIs.

The Jakarta Messaging specification defines several interfaces intended for integration with an

138

https://jakarta.ee/specifications/servlet/
https://jakarta.ee/specifications/pages/
https://jakarta.ee/specifications/expression-language/
https://jakarta.ee/specifications/expression-language/

application server. A Jakarta EE product need not provide objects that implement these interfaces,
and portable Jakarta EE applications must not use the following interfaces:

• jakarta.jms.ServerSession

• jakarta.jms.ServerSessionPool

• jakarta.jms.ConnectionConsumer

all jakarta.jms XA interfaces

The following methods may only be used by application components executing in the application
client container:

• jakarta.jms.MessageConsumer method getMessageListener

• jakarta.jms.MessageConsumer method setMessageListener

• jakarta.jms.JMSConsumer method getMessageListener

• jakarta.jms.JMSConsumer method setMessageListener

• jakarta.jms.Connection method setExceptionListener

• jakarta.jms.Connection method stop

• jakarta.jms.Connection method setClientID

• jakarta.jms.JMSContext method stop

• jakarta.jms.JMSContext method setClientID

• jakarta.jms.JMSContext method setExceptionListener

• jakarta.jms.JMSContext method createContext

• jakarta.jms.Producer method setAsync

• jakarta.jms.MessageProducer method send(Message message, CompletionListener
completionListener)

• jakarta.jms.MessageProducer method send(Message message, int deliveryMode, int priority, long
timeToLive, CompletionListener completionListener)

• jakarta.jms.MessageProducer method send(Destination destination, Message message,
CompletionListener completionListener)

• jakarta.jms.MessageProducer method send(Destination destination, Message message, int
deliveryMode, int priority, long timeToLive, CompletionListener completionListener)

The following methods may only be used by application components executing in the application
client container. Note, however, that these methods provide an expert facility not used by ordinary
applications. See the JMS specification for further detail.

jakarta.jms.Session method setMessageListener

• jakarta.jms.Session method getMessageListener

• jakarta.jms.Session method run

• jakarta.jms.Connection method createConnectionConsumer

139

• jakarta.jms.Connection method createSharedConnectionConsumer

• jakarta.jms.Connection method createDurableConnectionConsumer

jakarta.jms.Connection method createSharedDurableConnectionConsumer

A Jakarta EE container may throw a JMSException (if allowed by the method) or a
JMSRuntimeException (if throwing a JMSException is not allowed by the method) if the application
component violates any of the above restrictions.

Application components in the web and enterprise bean containers must not attempt to create
more than one active (not closed) Session object per connection. An attempt to use the Connection
object’s createSession method when an active Session object exists for that connection should be
prohibited by the container. The container should throw a JMSException if the application
component violates this restriction. An attempt to use the JMSContext object’s createContext method
should be prohibited by the container. The container should throw a JMSRuntimeException , since
the first JMSContext already contains a connection and session and this method would create a
second session on the same connection. Application client containers must support the creation of
multiple sessions for each connection.

The Jakarta Messaging specification defines further restrictions on the use of Jakarta Messaging in
the Enterprise Beans and web containers. In general, the behavior of a Jakarta Messaging provider
should be the same in both the enterprise beans container and the web container.

The Jakarta Messaging specification is available at https://jakarta.ee/specifications/messaging/ .

6.8. Transaction 2.0 Requirements
Jakarta Transaction defines the UserTransaction interface that is used by applications to start, and
commit or abort transactions. Application components get a UserTransaction object through a JNDI
lookup using the name java:comp/UserTransaction or by requesting injection of a UserTransaction
object.

Jakarta Transaction also defines the TransactionSynchronizationRegistry interface that can be used
by system level components such as persistence managers to interact with the transaction manager.
These components get a TransactionSynchronizationRegistry object through a JNDI lookup using the
name java:comp/TransactionSynchronizationRegistry or by requesting injection of a
TransactionSynchronizationRegistry object.

A number of interfaces defined by Jakarta Transaction are used by an application server to
communicate with a transaction manager, and for a transaction manager to interact with a
resource manager. These interfaces must be supported as described in the Connector specification.
In addition, support for other transaction facilities may be provided transparently to the
application by a Jakarta EE product.

The Jakarta Transaction specification is available at https://jakarta.ee/specifications/transactions/ .

140

https://jakarta.ee/specifications/messaging/
https://jakarta.ee/specifications/transactions/

6.9. Activation 2.1 Requirements
Jakarta Activation defines a set of standard services to: determine the MIME type of an arbitrary
piece of data; encapsulate access to it; discover the operations available on it; and instantiate the
appropriate bean to perform the operation(s). A Jakarta EE product must support Activation.

The Jakarta Activation specification is available at https://jakarta.ee/specifications/activation/ .

6.10. Mail 2.1 Requirements
The Jakarta Mail API allows for access to email messages contained in message stores, and for the
creation and sending of email messages using a message transport. Specific support is included for
Internet standard MIME messages. Access to message stores and transports is through protocol
providers supporting specific store and transport protocols. The Jakarta Mail API specification does
not require any specific protocol providers, but the Jakarta EE platform should include an IMAP
message store provider, a POP3 message store provider, and an SMTP message transport provider.

Configuration of the Jakarta Mail API is typically done by setting properties in a Properties object
that is used to create a jakarta.mail.Session object using a static factory method. To allow the
Jakarta EE platform to configure and manage Jakarta Mail API sessions, an application component
that uses the Jakarta Mail API should request a Session object using JNDI, and should list its need for
a Session object in its deployment descriptor using a resource-ref element, or by using a Resource
annotation. A Jakarta Mail API Session object should be considered a resource factory, as described
in Resource Manager Connection Factory References. This specification requires that the Jakarta EE
platform support jakarta.mail.Session objects as resource factories, as described in that section.

The Jakarta EE platform requires that a message transport be provided that is capable of handling
addresses of type jakarta.mail.internet.InternetAddress and messages of type
jakarta.mail.internet.MimeMessage . The default message transport must be properly configured to
send such messages using the send method of the jakarta.mail.Transport class. Any authentication
needed by the default transport must be handled without need for the application to provide a
jakarta.mail.Authenticator or to explicitly connect to the transport and supply authentication
information.

This specification does not require that a Jakarta EE product support any message store protocols.

Note that the Jakarta Mail API creates threads to deliver notifications of Store , Folder , and
Transport events. The use of these notification facilities may be limited by the restrictions on the
use of threads in various containers. In Enterprise Beans containers, for instance, it is typically not
possible to create threads.

The Jakarta Mail API uses the Jakarta Activation API to support various MIME data types. The
Jakarta Mail API must include jakarta.activation.DataContentHandlers for the following MIME data
types, corresponding to the Java programming language type indicated in Jakarta Mail API MIME
Data Type to Java Type Mappings .

Table 5. Jakarta Mail API MIME Data Type to Java Type Mappings

141

https://jakarta.ee/specifications/activation/

Mime Type Java Type

text/plain java.lang.String

text/html_ java.lang.String

text/xml java.lang.String

multipart/* jakarta.mail.internet.MimeMultipart

message/rfc822 jakarta.mail.internet.MimeMessage

The Jakarta Mail API specification is available at https://jakarta.ee/specifications/mail/ .

6.11. Connectors 2.1 Requirements
In full Jakarta EE products, all Jakarta Enterprise Beans containers and all web containers must
support the full set of Connector APIs. All such containers must support Resource Adapters that use
any of the specified transaction capabilities. The Jakarta EE deployment tools must support
deployment of Resource Adapters, as defined in the Connector specification, and must support the
deployment of applications that use Resource Adapters.

The Jakarta EE Connectors specification is available at https://jakarta.ee/specifications/connectors/ .

6.12. RESTful Web Services 4.0 Requirements
Jakarta RESTful Web Services defines APIs for the development of Web services built according to
the Representational State Transfer (REST) architectural style.

In a full Jakarta EE product, all Jakarta EE web containers are required to support applications that
use Jakarta RESTful Web Services technology.

The specification describes the deployment of services as a servlet. It must be possible to deploy
Jakarta RESTful Web Services-based applications using this deployment model with the servlet-class
element of the web.xml descriptor naming the application-supplied extension of the Jakarta
RESTful Web Services Application abstract class.

The specification defines a set of optional container-managed facilities and resources that are
intended to be available in a Jakarta EE container — all such features and resources must be made
available.

The Jakarta RESTful Web Services specification is available at https://jakarta.ee/specifications/
restful-ws/ .

6.13. WebSocket 2.2 (WebSocket) Requirements
The Jakarta WebSocket (WebSocket) is a standard API for creating WebSocket applications. In a full
Jakarta EE product, all Jakarta EE web containers are required to support the WebSocket API.

The Jakarta WebSocket specification can be found at https://jakarta.ee/specifications/websocket/ .

142

https://jakarta.ee/specifications/mail/
https://jakarta.ee/specifications/connectors/
https://jakarta.ee/specifications/restful-ws/
https://jakarta.ee/specifications/restful-ws/
https://jakarta.ee/specifications/websocket/

6.14. JSON Processing 2.1 (JSON-P) Requirements
JSON (JavaScript Object Notation) is a lightweight data-interchange format used by many web
services. The Jakarta JSON Processing (JSON-P) provides a convenient way to process (parse,
generate, transform, and query) JSON text.

In a full Jakarta EE product, all Jakarta EE application client containers, web containers, and
enterprise beans containers are required to support the JSON-P API.

The Jakarta JSON Processing specification can be found at https://jakarta.ee/specifications/jsonp/ .

6.15. JSON Binding 3.0 (JSON-B) Requirements
The Jakarta JSON Binding API for JSON Binding (JSON-B) provides a convenient way to map
between JSON text and Java objects.

In a full Jakarta EE product, all Jakarta EE application client containers, web containers, and
enterprise beans containers are required to support the JSON-B API.

The Jakarta JSON Binding specification can be found at https://jakarta.ee/specifications/jsonb/.

6.16. Concurrency 3.1 (Concurrency Utilities)
Requirements
Jakarta Concurrency Utilities for Jakarta EE is a standard API for providing asynchronous
capabilities to Jakarta EE application components through the following types of objects: managed
executor service, managed scheduled executor service, managed thread factory, and context
service. In a full Jakarta EE product, all web containers and enterprise beans containers are
required to support the Concurrency Utilities API. The Jakarta EE Product Provider must provide
preconfigured default managed executor service, managed scheduled executor service, managed
thread factory, and context service objects for use by the application in the containers in which the
Concurrency Utilities API is required to be supported.

The Jakarta Concurrency specification can be found at https://jakarta.ee/specifications/concurrency/ .

6.17. Batch 2.1 Specification Requirements
The Jakarta Batch provides a programming model for batch applications and a runtime for
scheduling and executing jobs.

In a full Jakarta EE product, all Jakarta EE web containers and Jakarta Enterprise Beans containers
are required to support the Batch API.

The Jakarta Batch specification can be found at https://jakarta.ee/specifications/batch/ .

143

https://jakarta.ee/specifications/jsonp/
https://jakarta.ee/specifications/jsonb/
https://jakarta.ee/specifications/concurrency/
https://jakarta.ee/specifications/batch/

6.18. Authorization 3.0 Requirements
The Jakarta Authorization specification defines a contract between a Jakarta EE application server
and an authorization policy provider. In a full Jakarta EE product, all Jakarta EE web containers
and enterprise bean containers are required to support this contract.

The Jakarta Authorization specification can be found at https://jakarta.ee/specifications/
authorization/ .

6.19. Authentication 3.1 Requirements
The Jakarta Authentication specification defines a service provider interface (SPI) by which
authentication providers implementing message authentication mechanisms may be integrated in
client or server message processing containers or runtimes. Authentication providers integrated
through this interface operate on network messages provided to them by their calling container.
They transform outgoing messages such that the source of the message may be authenticated by the
receiving container, and the recipient of the message may be authenticated by the message sender.
They authenticate incoming messages and return to their calling container the identity established
as a result of the message authentication.

In a full Jakarta EE product, all Jakarta EE web containers and enterprise bean containers are
required to support the baseline compatibility requirements as defined by the Jakarta
Authentication specification. In a full Jakarta EE product, all web containers must also support the
Servlet Container Profile as defined in the Jakarta Authentication specification. In a Jakarta EE
profile product that includes Servlet and Jakarta Authentication, all web containers must also
support the Servlet Container Profile as defined in the Jakarta Authentication specification. Support
for the Jakarta Authentication SOAP Profile is not required.

The Jakarta Authentication specification can be found at https://jakarta.ee/specifications/
authentication/ .

6.20. Security 4.0 Requirements
Jakarta Security leverages Jakarta Authentication , but provides an easier to use SPI for
authentication of users of web applications and defines identity store APIs for authentication and
authorization.

In a full Jakarta EE product, all Jakarta EE web containers and enterprise bean containers are
required to support the requirements defined by the Jakarta Security specification.

The Jakarta Security Specification can be found at https://jakarta.ee/specifications/security/ .

6.21. Debugging Support for Other Languages
Requirements 2.0
Jakarta Server Pages pages are usually translated into Java language pages and then compiled to
create class files. The Jakarta Debugging Support for Other Languages specification describes

144

https://jakarta.ee/specifications/authorization/
https://jakarta.ee/specifications/authorization/
https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/security/

information that can be included in a class file to relate class file data to data in the original source
file. All Jakarta EE products are required to be able to include such information in class files that
are generated from Jakarta Server Pages.

The Jakarta Debugging Support for Other Languages specification can be found at https://jakarta.ee/
specifications/debugging/ .

6.22. Standard Tag Library for Jakarta Server Pages 3.0
Requirements
Jakarta Standard Tag Library specification defines a standard tag library that makes it easier to
develop Jakarta Server Pages Pages. All Jakarta EE products are required to provide a Jakarta
Standard Tag Library for use by all Jakarta Server Pages.

The Jakarta Standard Tag Library for Jakarta Server Pages specification can be found at
https://jakarta.ee/specifications/tags/ .

6.23. Server Faces 4.1 Requirements
Jakarta Server Faces technology simplifies building user interfaces for Jakarta applications.
Developers of various skill levels can quickly build web applications by: assembling reusable UI
components in a page; connecting these components to an application data source; and wiring
client-generated events to server-side event handlers. In a full Jakarta EE product, all Jakarta EE
web containers are required to support applications that use the Jakarta Server Faces technology.

The Jakarta Server Faces specification can be found at https://jakarta.ee/specifications/faces/ .

6.24. Annotations 3.0 Requirements
The Jakarta Annotations specification defines Java language annotations that are used by several
other specifications, including this specification. The specifications that use these annotations fully
define the requirements for these annotations. All other containers must provide definitions for all
of these annotations, and must support the semantics of these annotations as described in the
corresponding specifications and summarized in the following table.

Table 6. Annotations Support by Container

Annotation App Client Web Enterprise Beans

Resource Y Y Y

Resources Y Y Y

PostConstruct Y Y Y

PreDestroy Y Y Y

Generated N N N

RunAs N Y Y

DeclareRoles N Y Y

145

https://jakarta.ee/specifications/debugging/
https://jakarta.ee/specifications/debugging/
https://jakarta.ee/specifications/tags/
https://jakarta.ee/specifications/faces/

Annotation App Client Web Enterprise Beans

RolesAllowed N Y Y

PermitAll N Y Y

DenyAll N Y Y

DataSourceDefinition Y Y Y

DataSourceDefinitions Y Y Y

Priority Y Y Y

The Jakarta Annotations specification can be found at https://jakarta.ee/specifications/annotations/ .

6.25. Persistence 3.2 Requirements
Jakarta Persistence is the standard API for the management of persistence and object/relational
mapping. The Jakarta Persistence specification provides an object/relational mapping facility for
application developers using a Java domain model to manage a relational database.

As mandated by the Jakarta Persistence specification, in a Jakarta EE environment the classes of the
persistence unit should not be loaded by the application class loader or any of its parent class
loaders until after the entity manager factory for the persistence unit has been created.

The Jakarta EE platform requires that if CDI is enabled, a BeanManager instance must be made
available to Jakarta Persistence providers by the container. The container is responsible for passing
this BeanManager instance via the map that is passed as the second argument to the
createContainerEntityManagerFactory(PersistenceUnitInfo, Map) method of the PersistenceProvider
interface. The map key used must be the standard property name jakarta.persistence.bean.manager.

The Jakarta EE platform also requires that if a Validation provider exists in the container
environment and the validation-mode NONE is not specified, a ValidatorFactory instance must be
made available to Jakarta Persistence providers by the container. The container is responsible for
passing this ValidatorFactory instance via the map that is passed as the second argument to the
createContainerEntityManagerFactory(PersistenceUnitInfo, Map) method of the PersistenceProvider
interface. The map key used must be the standard property name
jakarta.persistence.validation.factory.

Additional requirements on Jakarta EE platform containers are specified in the Jakarta Persistence
specification found at https://jakarta.ee/specifications/persistence/ .

6.26. Validation 3.1 Requirements
The Validation specification defines a metadata model and API for JavaBean validation. The default
metadata source is annotations, with the ability to override and extend the metadata through the
use of XML validation descriptors.

The Jakarta EE platform requires that web containers make an instance of ValidatorFactory
available to Jakarta Server Faces implementations by storing it in a servlet context attribute named
jakarta.faces.validator.beanValidator.ValidatorFactory.

146

https://jakarta.ee/specifications/annotations/
https://jakarta.ee/specifications/persistence/

The Jakarta EE platform also requires that an instance of ValidatorFactory be made available to
Jakarta Persistence providers as a property in the map that is passed as the second argument to the
createContainerEntityManagerFactory(PersistenceUnitInfo, Map) method of the PersistenceProvider
interface, under the name jakarta.persistence.validation.factory .

Additional requirements on Jakarta EE platform containers are specified in the Validation
specification, which can be found at https://jakarta.ee/specifications/bean-validation/ .

6.27. Interceptors 2.2 Requirements
The Interceptors specification makes more generally available the interceptor facility originally
defined as part of the Jakarta Enterprise Beans 4.0 specification.

The Interceptors specification can be found at https://jakarta.ee/specifications/interceptors/ .

6.28. Contexts and Dependency Injection (CDI) 4.1
Requirements
The Contexts and Dependency Injection (CDI) specification defines a set of contextual services,
provided by Jakarta EE containers, aimed at simplifying the creation of applications that use both
web tier and business tier technologies.

The CDI specification can be found at https://jakarta.ee/specifications/cdi/ .

6.29. Dependency Injection for Java 2.0 Requirements
The Dependency Injection for Java (DI) specification defines a standard set of annotations (and one
interface) for use on injectable classes.

In the Jakarta EE platform, support for Dependency Injection is mediated by CDI. See Support for
Dependency Injection for more detail.

The DI specification can be found at https://jakarta.ee/specifications/dependency-injection/ .

[1] Removed from Java SE 11. Support for Java IDL is optional Product vendors that wish to support Java IDL on a Java SE version
that does not provide the Java IDL APIs must otherwise provide those APIs to application components.

[2] Removed from Java SE 11. Product vendors that support the optional Enterprise Beans 2.x API group must ensure that the
javax.rmi.PortableRemoteObject class is available to application components.

[3] Removed from Java SE 11. Since Jakarta EE 9 this optional technology is provided under a Jakarta EE specification. If the
technology is provided, the container must provide the Jakarta EE version of the technology. See Required Jakarta Technologies.

[4] Removed from Java SE 11. Since Jakarta EE 9 this technology is provided under a Jakarta EE specification. The container must
provide the Jakarta EE version of the technology. See Required Jakarta Technologies.

[5] Note that a component specification is permitted to specify an exception to this in order to accommodate interface type
dependencies—for example, the Jakarta™ Enterprise Beans SessionContext dependency on the
jakarta.xml.rpc.handler.MessageContext type.

147

https://jakarta.ee/specifications/bean-validation/
https://jakarta.ee/specifications/interceptors/
https://jakarta.ee/specifications/cdi/
https://jakarta.ee/specifications/dependency-injection/

Chapter 7. Interoperability
This chapter describes the interoperability features for the Jakarta™ EE Platform.

7.1. Introduction to Interoperability
The Jakarta EE platform will be used by enterprise environments that support clients of many
different types. The enterprise environments will add new services to existing Enterprise
Information Systems (EISs). They will be using various hardware platforms and applications
written in various languages.

In particular, the Jakarta EE platform may be used in enterprise environments to bring together
any of the following kinds of applications:

• applications written in such languages as C++ and Visual Basic.

• applications running on a personal computer platform, or Unix® workstation.

• standalone Java™ technology-based applications that are not directly supported by the Jakarta
EE platform.

It is the interoperability features of the Jakarta EE platform, set out in this chapter, that make it
possible for it to provide indirect support for various types of clients, different hardware platforms,
and a multitude of software applications. The interoperability features of the Jakarta EE platform
permit the underlying disparate systems to work together seamlessly, while hiding much of the
complexity required to join these pieces together.

The interoperability features for the current Jakarta EE platform release may allow:

• Jakarta EE applications to connect to legacy systems using CORBA or low-level socket interfaces.

• Jakarta EE applications to connect to other Jakarta EE applications across multiple Jakarta EE
products and platforms.

In this version of the specification, interoperability between Jakarta EE applications running in
different platforms may be accomplished through the HTTP protocol, possibly using SSL, or the
OMG (CORBA) protocol.

7.2. Interoperability Protocols
This specification allows a Jakarta EE product to support a standard set of protocols and formats to
ensure interoperability between Jakarta EE applications and with other applications that also
implement these protocols and formats. The specification supports the following groups of
protocols and formats:

• Internet and web protocols

• OMG protocols (optional)

• Java technology protocols

• Data formats

148

Most of these protocols and formats are supported by Java SE and by the underlying operating
system.

7.2.1. Internet and Web Protocols

Standards based Internet protocols are the means by which different pieces of the platform
communicate. The Jakarta EE platform typically supports the following Internet protocols, as
described in the corresponding technology specifications:

• TCP/IP protocol family—This is the core component of Internet communication. TCP/IP and
UDP/IP are the standard transport protocols for the Internet. TCP/IP is supported by Java SE and
the underlying operating system.

• HTTP 1.1—This is the core protocol of web communication. As with TCP/IP, HTTP 1.1 is
supported by Java SE and the underlying operating system. A Jakarta EE web container must be
capable of advertising its HTTP services on the standard HTTP port, port 80.

• HTTP/2—Server-side support for the HTTP/2 protocol is required by the Servlet specification.

• SSL 3.0, TLS 1.2—SSL 3.0 (Secure Socket Layer) represents the security layer for Web
communication. It is available indirectly when using the https URL as opposed to the http URL.
A Jakarta EE web container must be capable of advertising its HTTPS service on the standard
HTTPS port, port 443.

• SOAP 1.1—SOAP is a presentation layer protocol for the exchange of XML messages. Support for
SOAP layered on HTTP is optional, as described in the Jakarta XML-based RPC[1] and Jakarta
XML Web Services[2] specifications.

• SOAP 1.2—SOAP 1.2 is the version of the SOAP protocol standardized through W3C and
supported by Jakarta XML Web Services[2].

• WS-I Basic Profile 1.1—The WS-I Basic Profile, in combination with the Simple SOAP Binding
Profile and Attachment Profile, describes interoperability requirements for the use of SOAP 1.1,
WSDL 1.1, and MIME-based SOAP with Attachments. It is optional as defined by the Jakarta
XML-based RPC[1] and Jakarta XML Web Services[2] specifications.

• WebSocket protocol—The WebSocket protocol enables two-way communication layered over
TCP. It enables bi-directional communication over a single connection established by an initial
HTTP handshake and upgrade request. The WebSocket protocol has been standardized by IETF
under RFC 6455.

7.2.2. OMG Protocols (optional)

Support for the Object Management Group (OMG) based protocols is optional for Jakarta EE 9.

7.2.3. Java Technology Protocols

This specification requires the Jakarta EE platform to support the JRMP protocol, which is the Java
technology-specific Remote Method Invocation (RMI) protocol. JRMP is a required component of
Java SE.

JRMP is a distributed object model for the Java programming language. Distributed systems,
running in different address spaces and often on different hosts, must be able to communicate with

149

each other. JRMP permits program-level objects in different address spaces to invoke remote
objects using the semantics of the Java programming language object model.

Complete information on the JRMP specification can be found at https://docs.oracle.com/javase/8/
docs/technotes/guides/rmi/ .

7.2.4. Data Formats

In addition to the protocols that allow communication between components, this specification
requires Jakarta EE platform support for a number of data formats. These formats provide the
definition for data exchanged between components.

The following data formats must be supported:

• XML 1.0—The XML format can be used to construct documents, RPC messages, etc. The JAXP API
provides support for processing XML format data. The Jakarta XML-based RPC[1] API provides
support for XML RPC messages, as well as a mapping between Java classes and XML.

• JSON—JSON is a language-neutral plain text format commonly used to transfer structured data
between a server and web application. The Jakarta JSON Processing API provides support for
the parsing, generation, transformation, and querying of JSON text. The Jakarta JSON Binding
API provides support for mapping between JSON text and Java objects.

• HTML 4.01—This represents the minimum web browser standard document format. While all
Jakarta EE APIs with the exception of Jakarta Server Faces are agnostic to the version of the
browser document format, Jakarta EE web clients must be able to display HTML 4.01
documents.

• Image file formats—The Jakarta EE platform must support GIF, JPEG, and PNG images. Support
for these formats is provided by the java.awt.image APIs (see the URL: https://docs.oracle.com/
javase/8/docs/api/java/awt/image/package-summary.html) and by Jakarta EE web clients.

• JAR files—JAR (Java Archive) files are the standard packaging format for Java technology-based
application components, including the ejb-jar specialized format, the Web application archive
(WAR) format, the Resource Adapter archive (RAR), and the Jakarta EE enterprise application
archive (EAR) format. JAR is a platform-independent file format that permits many files to be
aggregated into one file. This allows multiple Java components to be bundled into one JAR file
and downloaded to a browser in a single HTTP transaction. JAR file formats are supported by
the java.util.jar and java.util.zip packages. For complete information on the JAR specification,
see https://docs.oracle.com/javase/8/docs/technotes/guides/jar/ .

• Class file format—The class file format is specified in the Java Virtual Machine specification.
Each class file contains one Java programming language type—either a class or an
interface—and consists of a stream of 8-bit bytes. For complete information on the class file
format, see https://docs.oracle.com/javase/specs/ .

[1] Removed in Jakarta EE 9

[2] Made optional in Jakarta EE 9

150

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
https://docs.oracle.com/javase/8/docs/api/java/awt/image/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/awt/image/package-summary.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/
https://docs.oracle.com/javase/specs/

Chapter 8. Application Assembly and
Deployment
This chapter specifies Jakarta™ Enterprise Edition (Jakarta EE) requirements for assembling,
packaging, and deploying a Jakarta EE application. The main goal of these requirements is to
provide scalable and modular application assembly, and portable deployment of Jakarta EE
applications into any Jakarta EE product.

Jakarta EE applications are composed of one or more Jakarta EE components and an optional
Jakarta EE application deployment descriptor. The deployment descriptor, if present, lists the
application’s components as modules. If the deployment descriptor is not present, the application’s
modules are discovered using default naming rules. A Jakarta EE module represents the basic unit
of composition of a Jakarta EE application. Jakarta EE modules consist of one or more Jakarta EE
components and an optional module level deployment descriptor. The flexibility and extensibility
of the Jakarta EE component model facilitates the packaging and deployment of Jakarta EE
components as individual components, component libraries, or Jakarta EE applications.

A full Jakarta EE product must support all the facilities described in this chapter. A Jakarta EE
profile may support only a subset of the Jakarta EE module types. Any requirements related to a
module type not supported by a product based on a particular Jakarta EE profile should be
understood to not apply to such a product.

Jakarta EE Deployment shows the composition model for Jakarta EE deployment units and includes
the optional use of alternate deployment descriptors by the application package to preserve any
digital signatures of the original Jakarta EE modules. An alternate deployment descriptor may also
be provided external to the application package as described in Assembling a Jakarta EE
Application.

151

1

2

DD

3

DD

DD

Components Jakarta EE Modules Jakarta EE Application

EJB

EJB

EJB

EJB
Module 1

DD

Web App
Module 2

DD

Application
Client

Module 3

DD

Resource
Adapter
Module 4

DD

WEB

WEB

DD

4

DD

DD

DD

DD

Deployment
Tool

add/delete ingredients

deploy standalone module

Figure 9. Jakarta EE Deployment

8.1. Application Development Life Cycle
The development life cycle of a Jakarta EE application begins with the creation of discrete Jakarta
EE components. These components may then be packaged with a module level deployment
descriptor to create a Jakarta EE module. Jakarta EE modules can be deployed as stand-alone units
or can be assembled with a Jakarta EE application deployment descriptor and deployed as a Jakarta
EE application.

Jakarta EE Application Life Cycle shows the life cycle of a Jakarta EE application.

152

Assembled and
Augmented by

Application
Assembler

Assembled and
Augmented by

Application
Assembler

Created by
Component
Developer

Jakarta EE
JAR

Jakarta EE
APP

Enterprise
Components

deploy

Jakarta EE

Figure 10. Jakarta EE Application Life Cycle

8.1.1. Component Creation

The Jakarta Enterprise Beans, Jakarta Servlet, application client, and Jakarta Connector
specifications include the XML Schema definition of the associated module level deployment
descriptors and component packaging architecture required to produce Jakarta EE modules. (The
application client specification is found in Application Clients chapter of this document.)

A Jakarta EE module is a collection of one or more Jakarta EE components (web, Jakarta Enterprise
Beans, application client, or Jakarta Connector) with an optional module deployment descriptor of
that type. Any number of components of the same container type can be packaged together with a
single Jakarta EE deployment descriptor appropriate to that container type to produce a Jakarta EE
module. Components of different container types may not be mixed in a single Jakarta EE module,
except for the packaging of Jakarta Enterprise Beans components within a web module.

• A Jakarta EE module represents the basic unit of composition of a Jakarta EE application. In
some cases a single Jakarta EE module (not necessarily packaged into a Jakarta EE application
package) will contain an entire application. In other cases an application will be composed of
multiple Jakarta EE modules.

• The deployment descriptor for a Jakarta EE module contains declarative data required to deploy
the components in the module. The deployment descriptor for a Jakarta EE module also
contains assembly instructions that describe how the components are composed into an
application.

• Starting with version 5 of the Java EE, a web application module, an enterprise bean module, or
an application client module need not contain a deployment descriptor. Instead, the deployment
information may be specified by annotations present in the class files of the module.

• Starting with version 5 of the Java EE, a Jakarta EE enterprise application archive need not
contain a deployment descriptor. Instead, the deployment information may be determined
using default naming rules for embedded modules.

153

• An individual Jakarta EE module can be deployed as a stand-alone Jakarta EE module without
an application level deployment descriptor and represents a valid Jakarta EE application.

• Jakarta EE modules may express dependencies on libraries as described below in Library
Support.

All Jakarta EE modules have a name. The name can be explicitly set in the deployment descriptor
for the module. If not set, the name of the module is the pathname of the module in the ear file with
any filename extension (.jar, .war, .rar) removed, but with any directory names included. The name
of a module must be unique within an application. If and only if the name is not unique (e.g.,
because two names are identical after removing different filename extensions) the deployment tool
may choose new unique names for any of the conflicting modules; module names that do not
conflict must not be changed. The algorithm for choosing unique names in such a case is product
specific. Applications that depend on the names of their modules must ensure that their module
names are unique.

For example, an application with this structure:

myapp.ear
 inventory.jar
 ui.war

has a default application name of "myapp", and defines two modules with default names
"inventory" and "ui".

An application with this structure:

bigapp.ear
 ejbs
 inventory.jar
 accounts.jar
 ui
 store.war
 admin.war

has a default application name of "bigapp", and defines four modules with default names
"ejbs/inventory", "ejbs/accounts", "ui/store", and "ui/admin".

8.1.2. Application Assembly

A Jakarta EE application may consist of one or more Jakarta EE modules and one Jakarta EE
application deployment descriptor. A Jakarta EE application is packaged using the Jakarta Archive
(JAR) file format into a file with a .ear (Enterprise ARchive) filename extension. A minimal Jakarta
EE application package will only contain Jakarta EE modules and, optionally, the application
deployment descriptor. A Jakarta EE application package may also include libraries referenced by
Jakarta EE modules (using the Class-Path mechanism described below in Library Support), help
files, and documentation to aid the deployer.

154

The deployment of a portable Jakarta EE application should not depend on any entities that may be
contained in the package other than those defined by this specification. Deployment of a portable
Jakarta EE application must be possible using only the application deployment descriptor, if any,
and the Jakarta EE modules (and their dependent libraries) and descriptors listed in it.

The Jakarta EE application deployment descriptor represents the top level view of a Jakarta EE
application’s contents. The Jakarta EE application deployment descriptor is specified by an XML
schema or document type definition (see Jakarta EE Application XML Schema).

In certain cases, a Jakarta EE application will need customization before it can be deployed into the
enterprise. New Jakarta EE modules may be added to the application. Existing modules may be
removed from the application. Some Jakarta EE modules may need custom content created,
changed, or replaced. For example, an application consumer may need to use an HTML editor to
add company graphics to a template login page that was provided with a Jakarta EE web
application.

All Jakarta EE applications have a name. The name can be explicitly set in the application
deployment descriptor. If not set, the name of the application is the base name of the ear file with
any .ear extension removed and with any directory names removed. The name of an application
must be unique in an application server instance. If an attempt is made to deploy an application
with a name that conflicts with an already deployed application, the deployment tool may choose a
new unique name for the application. The deployment tool may also allow a different name to be
specified at deployment time. A deployment tool may use product-specific means to decide whether
a deployment operation is a deployment of a new application, in which case the name must be
unique, or a redeployment of an existing application, in which case the name may match the
existing application.

Similarly, when a stand-alone module is deployed, the module name is used as the application
name, and obeys the same rules as described above for application names. The module name can
be explicitly set in the module deployment descriptor. If not set, the name of the module is the base
name of the module file with any extension (.war , .jar , .rar) removed and with any directory
names removed.

8.1.3. Deployment

During the deployment phase of an application’s life cycle, the application is installed on the
Jakarta EE platform and then is configured and integrated into the existing infrastructure. Each
Jakarta EE module listed in the application deployment descriptor (or discovered using the default
rules described below) must be deployed according to the requirements of the specification for the
respective Jakarta EE module type. Each module listed must be installed in the appropriate
container type and the environment properties of each module must be set appropriately in the
target container to reflect the values declared by the deployment descriptor element for each
component.

Every resource reference should be bound to a resource of the required type.

Some resources have default mapping rules specified; see sections Default Data Source, Default JMS
Connection Factory, and Default Concurrency Utilities Objects. By default, a product must map
otherwise unmapped resources using these default rules. A product may include an option to

155

disable or override these default mapping rules.

Once a resource reference is bound to a resource in the target operational environment, and
deployment succeeds, that binding is not expected to change. A product may provide administrative
operations that change the resource bindings that are used by applications. A product may notify
applications of changes to their resource bindings using JNDI events, but this is not required.

If deployment succeeds, in addition to binding resource references as specified above, every
resource definition (see section Resource Definition and Configuration) specified by the application
or specified or overridden by the Deployer must be present in the target operational environment.

8.2. Library Support
The Jakarta EE provides several mechanisms for applications to use optional packages and shared
libraries (hereafter referred to as libraries). Libraries may be bundled with an application or may
be installed separately for use by any application.

Jakarta EE products are required to support the use of bundled and installed libraries as specified
in the Extension Mechanism Architecture and Optional Package Versioning specifications (available
at https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/) and the JAR File Specification
(available at https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html). Using this
mechanism a Jakarta EE JAR file can reference utility classes or other shared classes or resources
packaged in a separate .jar file or directory that is included in the same Jakarta EE application
package, or that has been previously installed in the Jakarta EE containers.

8.2.1. Bundled Libraries

Libraries bundled with an application may be referenced in the following ways:

1. A JAR format file (such as a .jar file, .war file, or .rar file) may reference a .jar file or directory by
naming the referenced .jar file or directory in a Class-Path header in the referencing JAR file’s
Manifest file. The referenced .jar file or directory is named using a URL relative to the URL of
the referencing JAR file. The Manifest file is named META-INF/MANIFEST.MF in the JAR file. The
Class-Path entry in the Manifest file is of the form

Class-Path: list-of-jar-files-or-directories-separated-by-spaces

(See the JAR File Specification for important details and limitations of the syntax of Class-Path
headers.) The Jakarta EE deployment tools must process all such referenced files and directories
when processing a Jakarta EE module. Any deployment descriptors in referenced .jar files must be
ignored when processing the referencing .jar file. The deployment tool must install the .jar files and
directories in a way that preserves the relative references between the files. Typically this is done
by installing the .jar files into a directory hierarchy that matches the original application directory
hierarchy. All referenced .jar files or directories must appear in the logical class path of the
referencing JAR files at runtime.

Only JAR format files or directories containing class files or resources to be loaded directly by a
standard class loader should be the target of a Class-Path reference; such files are always named
with a .jar extension. Top level JAR files that are processed by a deployment tool should not contain

156

https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html

Class-Path entries; such entries would, by definition, reference other files external to the
deployment unit. A deployment tool is not required to process such external references.

1. A .ear file may contain a directory that contains libraries packaged in JAR files. The library-
directory element of the .ear file’s deployment descriptor contains the name of this directory. If
a library-directory element isn’t specified, or if the .ear file does not contain a deployment
descriptor, the directory named lib is used. An empty library-directory element may be used to
specify that there is no library directory.

All files in this directory (but not subdirectories) with a .jar extension must be made available to all
components packaged in the EAR file, including application clients. These libraries may reference
other libraries, either bundled with the application or installed separately, using any of the
techniques described herein.

1. A web application may include libraries in the WEB-INF/lib directory. See the Jakarta Servlet
specification for details. These libraries may reference other libraries, either bundled with the
application or installed separately, using any of the techniques described herein.

8.2.2. Installed Libraries

Libraries that have been installed separately may be referenced in the following way:

1. JAR format files of all types may contain an Extension-List attribute in their Manifest file,
indicating a dependency on an installed library. The JAR File Specification defines the semantics
of such attributes; this specification requires support for such attributes for all component types
and corresponding JAR format files. The deployment tool is required to check such dependency
information and reject the deployment of any component for which the dependency can not be
met. Portable applications should not assume that any installed libraries will be available to a
component unless the component’s JAR format file, or one of the containing JAR format files,
expresses a dependency on the library using the Extension-List and related attributes.

The referenced libraries must be made available to all components contained within the
referencing file, including any components contained within other JAR format files within the
referencing file. For example, if a .ear file references an installed library, the library must be made
available to all components in all .war files, Jakarta Enterprise Beans .jar files, application .jar files,
and resource adapter .rar files within the .ear file.

A Jakarta EE product is not required to support downloading of libraries (using the <extension>-
Implementation-URL header) at deployment time or runtime. A Jakarta EE product is also not
required to support more than a single version of an installed library at once. A Jakarta EE product
is not required to limit access to installed libraries to only those for which the application has
expressed a dependency; the application may be given access to more installed libraries than it has
requested. In all of these cases, such support is highly recommended and may be required in a
future version of this specification. In particular, we recommend that a Jakarta EE product support
multiple versions of an installed library, and by default only allow applications to access the
installed libraries for which they have expressed a dependency.

157

8.2.3. Library Conflicts

If an application includes a bundled version of a library, and the same library exists as an installed
library, the instance of the library bundled with the application should be used in preference to any
installed version of the library. This allows an application to bundle exactly the version of a library
it requires without being influenced by any installed libraries. Note that if the library is also a
required component of the Jakarta EE version on which the application is being deployed, this
version may (and typically will) take precedence.

8.2.4. Library Resources

In addition to allowing access to referenced classes, as described above, any resources contained in
the referenced JAR files must also be accessible using the Class and ClassLoader getResource
methods, as allowed by the security permissions of the application. An application will typically
have the security permissions required to access resources in any of the JAR files packaged with the
application.

8.2.5. Dynamic Class Loading

Libraries that dynamically load classes must consider the class loading environment of a Jakarta EE
application. Libraries will often be loaded by a class loader that is a parent class loader of the class
loader that is used to load application classes and thus will not have direct visibility to classes of the
application modules. A library that only needs to dynamically load classes provided by the library
itself can safely use the Class method forName . However, libraries that need to dynamically load
classes that have been provided as a part of the application need to use the context class loader to
load the classes. Note that the context class loader may be different in each module of an
application. Access to the context class loader requires RuntimePermission (“ getClassLoader”) ,
which is not normally granted to applications, but should be granted to libraries that need to
dynamically load classes. Libraries can use a method such as the following to assert their privilege
when accessing the context class loader. This technique will work in both Java SE and Jakarta EE.

public ClassLoader getContextClassLoader() {
 return AccessController.doPrivileged(
 new PrivilegedAction<ClassLoader>() {
 public ClassLoader run() {
 ClassLoader cl = null;
 try {
 cl = Thread.currentThread().
 getContextClassLoader();
 } catch (SecurityException ex) { }
 return cl;
 }
 });
}

Libraries should then use the following technique to load classes.

ClassLoader cl = getContextClassLoader();

158

if (cl != null) {
 try {
 clazz = Class.forName(name, false, cl);
 } catch (ClassNotFoundException ex) {
 clazz = Class.forName(name);
 }
 } else
 clazz = Class.forName(name);

8.2.6. Examples

The following example illustrates a simple use of the bundled library mechanism to reference a
library of utility classes that are shared between enterprise beans in two separate ejb-jar files.

app1.ear:
 META-INF/application.xml
 ejb1.jar Class-Path: util.jar
 ejb2.jar Class-Path: util.jar
 util.jar

The next example illustrates a more complex use of the Class-Path mechanism. In this example the
Developer has chosen to package the enterprise bean client view classes in a separate JAR file and
reference that JAR file from the other JAR files that need those classes. Those classes are needed
both by ejb2.jar , packaged in the same application as ejb1.jar , and by ejb3.jar and
jakartaservlet1.jar , packaged in a different application. Those classes are also needed by ejb1.jar
itself because they define the remote interface of the enterprise beans in ejb1.jar , and the
developer has chosen the by reference model of making these classes available, as described in the
Jakarta Enterprise Beans spec. The deployment descriptor for ejb1.jar names the client view JAR file
in the ejb-client-jar element.

The Class-Path mechanism must be used by components in app3.ear to reference the client view
JAR file that corresponds to the enterprise beans packaged in ejb1.jar of app2.ear . These enterprise
beans are referenced by enterprise beans in ejb3.jar and by the Jakarta Servlets packaged in
webapp.war .

app2.ear:
 META-INF/application.xml
 ejb1.jar Class-Path: ejb1_client.jar
 deployment descriptor contains:
 <ejb-client-jar>ejb1_client.jar</ejb-client-jar>
 ejb1_client.jar
 ejb2.jar Class-Path: ejb1_client.jar

app3.ear:
 META-INF/application.xml
 ejb1_client.jar
 ejb3.jar Class-Path: ejb1_client.jar
 webapp.war Class-Path: ejb1_client.jar

159

 WEB-INF/web.xml
 WEB-INF/lib/jakartaservlet1.jar

The following example illustrates a simple use of the installed library mechanism to reference a
library of utility classes that is installed separately.

app1.ear:
 META-INF/application.xml
 ejb1.jar :
 META-INF/MANIFEST.MF:
 Extension-List: util
 util-Extension-Name: com/example/util
 util-Specification-Version: 1.4
 META-INF/ejb-jar.xml

util.jar:
 META-INF/MANIFEST.MF:
 Extension-Name: com/example/util
 Specification-Title: example.com’s util package
 Specification-Version: 1.4
 Specification-Vendor: example.com
 Implementation-Version: build96

8.3. Class Loading Requirements
The Jakarta EE specification purposely does not define the exact types and arrangements of class
loaders that must be used by a Jakarta EE product. Instead, the specification defines requirements
in terms of what classes must or must not be visible to components. A Jakarta EE product is free to
use whatever class loaders it chooses to meet these requirements. Portable applications must not
depend on the types of class loaders used or the hierarchical arrangement of class loaders, if any.
Portable applications must not depend on the order in which classes and resources are loaded.
Applications should use the techniques described in Dynamic Class Loading if they need to load
classes dynamically.

In addition to the required classes specified below, a Jakarta EE product must provide a way to
allow an application to access a class library installed in the application server, even if it has not
expressed a dependency on that library. This supports the use of old applications and extension
libraries that do not use the defined extension dependency mechanism.

The following sections describe the requirements for each container type. In all cases, access to
classes is governed by the rules of the Java language and the Java virtual machine. In all cases,
access to classes and resources is governed by the rules of the Java security model.

Note that while libraries must be accessible to application classes as described below, it may be
necessary to use the techniques described in Dynamic Class Loading if libraries need to access
classes packaged in the application modules.

160

8.3.1. Web Container Class Loading Requirements

Components in the web container must have access to the following classes and resources. Note
that as of Java EE 6, Java Enterprise Beans components may be packaged in a web component
module. Such Java Enterprise Beans components have the same access as other components in the
web container. See the Jakarta Enterprise Beans specification for further detail.

• The content of the WEB-INF/classes directory of the containing war file.

• The content of all jar files in the WEB-INF/lib directory of the containing war file, but not any
subdirectories.

• The transitive closure of any libraries referenced by the above jar files (as specified in Library
Support).

• The transitive closure of any libraries referenced by the war file itself (as specified in Library
Support).

• The transitive closure of any libraries specified by or referenced by the containing ear file (as
specified in Library Support).

• The contents of all jar files included in any resource adapter archives (rar files) included in the
same ear file.

• The contents of all jar files included in each resource adapter archive (rar file) deployed
separately to the application server, if that resource adapter is used to satisfy any resource
references in the module.

• The contents of all jar files included in each resource adapter archive (rar file) deployed
separately to the application server, if any jar file in that rar file is used to satisfy any reference
from the module using the Extension Mechanism Architecture (as specified in Library Support).

• The transitive closure of any libraries referenced by the jar files in the rar files above (as
specified in Library Support).

• The transitive closure of any libraries referenced by the rar files themselves (as specified in
Library Support).

• The Jakarta EE API classes specified in Jakarta EE Technologies for the web container.

• All required Java SE API classes.

Components in the web container may have access to the following classes and resources. Portable
applications must not depend on having or not having access to these classes or resources.

• The classes and resources accessible to any other web modules included in the same ear file, as
described above.

• The content of any Jakarta Enterprise Beans jar files included in the same ear file.

• The content of any client jar files specified by the above Jakarta Enterprise Beans jar files.

• The transitive closure of any libraries referenced by the above Jakarta Enterprise Beans jar files
and client jar files (as specified in Library Support).

• The contents of any jar files included in any resource adapter archives (rar files) deployed
separately to the application server.

161

• The transitive closure of any libraries referenced by the jar files in the rar files above (as
specified in Library Support).

• The transitive closure of any libraries referenced by the rar files above themselves (as specified
in Library Support).

• The Jakarta EE API classes specified in Jakarta EE Technologies for the containers other than the
web container.

• Any installed libraries available in the application server.

• Other classes or resources contained in the application package, and specified by an explicit use
of an extension not defined by this specification.

• Other classes and resources that are part of the implementation of the application server.

Components in the web container must not have access to the following classes and resources,
unless such classes or resources are covered by one of the rules above.

• Other classes or resources in the application package. For example, the application should not
have access to the classes in application client jar files.

8.3.2. Jakarta Enterprise Beans Container Class Loading Requirements

Components in the Jakarta Enterprise Beans container must have access to the following classes
and resources.

• The content of the Jakarta Enterprise Beans jar file.

• The transitive closure of any libraries referenced by the Jakarta Enterprise Beans jar file (as
specified in Library Support).

• The transitive closure of any libraries specified by or referenced by the containing ear file (as
specified in Library Support).

• The contents of all jar files included in any resource adapter archives (rar files) included in the
same ear file.

• The contents of all jar files included in each resource adapter archive (rar file) deployed
separately to the application server, if that resource adapter is used to satisfy any resource
references in the module.

• The contents of all jar files included in each resource adapter archive (rar file) deployed
separately to the application server, if any jar file in that rar file is used to satisfy any reference
from the module using the Extension Mechanism Architecture (as specified in Library Support).

• The transitive closure of any libraries referenced by the jar files in the rar files above (as
specified in Library Support.

• The transitive closure of any libraries referenced by the rar files themselves (as specified in
Library Support).

• The Jakarta EE API classes specified in Jakarta EE Technologies for the Jakarta Enterprise Beans
container.

• All required Java SE API classes.

162

Components in the Jakarta Enterprise Beans container may have access to the following classes and
resources. Portable applications must not depend on having or not having access to these classes or
resources.

• The classes and resources accessible to any web modules included in the same ear file, as
described in Web Container Class Loading Requirements above.

• The content of any Jakarta Enterprise Beans jar files included in the same ear file.

• The content of any client jar files specified by the above Jakarta Enterprise Beans jar files.

• The transitive closure of any libraries referenced by the above Jakarta Enterprise Beans jar files
and client jar files (as specified in Library Support).

• The contents of any jar files included in any resource adapter archives (rar files) deployed
separately to the application server.

• The transitive closure of any libraries referenced by the jar files in the rar files above (as
specified in Library Support).

• The transitive closure of any libraries referenced by the rar files above themselves (as specified
in Library Support).

• The Jakarta EE API classes specified in Jakarta EE Technologies for the containers other than the
Jakarta Enterprise Beans container.

• Any installed libraries available in the application server.

• Other classes or resources contained in the application package, and specified by an explicit use
of an extension not defined by this specification.

• Other classes and resources that are part of the implementation of the application server.

Components in the Jakarta Enterprise Beans container must not have access to the following classes
and resources, unless such classes or resources are covered by one of the rules above.

• Other classes or resources in the application package. For example, the application should not
have access to the classes in application client jar files.

8.3.3. Application Client Container Class Loading Requirements

Components in the application client container must have access to the following classes and
resources.

• The content of the application client jar file.

• The transitive closure of any libraries referenced by the above jar file (as specified in Library
Support).

• The transitive closure of any libraries specified by or referenced by the containing ear file (as
specified in Library Support).

• The Jakarta EE API classes specified in Jakarta EE Technologies for the application client
container.

• All required Java SE API classes.

Components in the application client container may have access to the following classes and

163

resources. Portable applications must not depend on having or not having access to these classes or
resources.

• The Jakarta EE API classes specified in Jakarta EE Technologies for the containers other than the
application client container.

• Any installed libraries available in the application server.

• Other classes or resources contained in the application package, and specified by an explicit use
of an extension not defined by this specification.

• Other classes and resources that are part of the implementation of the application server.

Components in the application client container must not have access to the following classes and
resources, unless such classes or resources are covered by one of the rules above.

• Other classes or resources in the application package. For example, the application client should
not have access to the classes in other application client jar files in the same ear file, nor should
it have access to the classes in web applications or Jakarta Enterprise Beans jar files in the same
ear file.

8.4. Application Assembly
This section specifies the sequence of steps that are typically followed when composing a Jakarta EE
application.

8.4.1. Assembling a Jakarta EE Application

1. Select the Jakarta EE modules that will be used by the application.

2. Create an application directory structure.

The directory structure of an application is arbitrary, but by following some simple conventions a
deployment descriptor may not be needed. The structure should be designed around the
requirements of the contained components.

1. Reconcile Jakarta EE module deployment descriptors.

The deployment descriptors for the Jakarta EE modules must be edited to link internally satisfied
dependencies and eliminate any redundant security role names. An optional element alt-dd
(described in Jakarta EE Application XML Schema) may be used when it is desirable to preserve the
original deployment descriptor. The element alt-dd specifies an alternate deployment descriptor to
use at deployment time. The edited copy of the deployment descriptor file may be saved in the
application directory tree in a location determined by the Application Assembler. If the alt-dd
element is not present, the Deployer must read the deployment descriptor directly from the module
package.

1. Choose unique names for the modules contained in the application. If two modules specify
conflicting names in their deployment descriptors, create an alternate deployment descriptor
for at least one of the modules and change its name. If two modules in the same directory of the
ear file have the same base name (e.g., foo.jar and foo.war), rename one of the modules or
create an alternate deployment descriptor to specify a unique name for one of the modules.

164

2. Link the internally satisfied dependencies of all components in every module contained in the
application. For each component dependency, there must only be one corresponding
component that fulfills that dependency in the scope of the application.

3. For each ejb-link , there must be only one matching ejb-name in the scope of the entire
application (see Enterprise JavaBeans™ (EJB) References).

4. Dependencies that are not linked to internal components must be handled by the Deployer as
external dependencies that must be met by resources previously installed on the platform.
External dependencies must be linked to the resources on the platform during deployment.

5. Synchronize security role-names across the application. Rename unique role-names with
redundant meaning to a common name. Rename role-names with common names but different
meanings to unique names. Descriptions of role-names that are used by many components of
the application can be included in the application-level deployment descriptor.

6. Assign a context root for each web module included in the Jakarta EE application. The context
root is a relative name in the web namespace for the application. Each web module must be
given a distinct and non-overlapping name for its context root. The web modules will be
assigned a complete name in the namespace of the web server at deployment time. If there is
only one web module in the Jakarta EE application, the context root may be the empty string. If
no deployment descriptor is included in the application package, it will use the default-context-
path in the web module. Otherwise, it will use the module name as the context root of the web
module. See the Jakarta Servlet specification for detailed requirements of context root naming.

7. Make sure that each component in the application properly describes any dependencies it may
have on other components in the application. A Jakarta EE application should not assume that
all components in the application will be available on the class path of the application at run
time. Each component might be loaded into a separate class loader with a separate namespace.
If the classes in a JAR file depend on classes in another JAR file, the first JAR file should
reference the second JAR file using the Class-Path mechanism. A notable exception to this rule is
JAR files located in the WEB-INF/lib directory of a web application. All such JAR files are
included in the class path of the web application at runtime; explicit references to them using
the Class-Path mechanism are not needed. Another exception to this rule is JAR files located in
the library directory (usually named lib) in the application package. Note that the presence of
component-declaring annotations in shared artifacts, such as libraries in the library directory
and libraries referenced by more than one module through Class-Path references, can have
unintended and undesirable consequences and is not recommended.

8. There must be only one version of each class in an application. If one component depends on
one version of a library, and another component depends on another version, it may not be
possible to deploy an application containing both components. With the exception of
application clients, a Jakarta EE application should not assume that each component is loaded in
a separate class loader and has a separate namespace. All components in a single application
may be loaded in a single class loader and share a single namespace. Note, however, that it must
be possible to deploy an application such that all components of the application are in a
namespace (or namespaces) separate from that of other applications. Typically, this will be the
normal method of deployment. By default, application clients are each deployed into their own
Java virtual machine instance, and thus each application client has its own class namespace,
and the classes from application clients are not visible in the class namespace of other
components.

165

9. (Optional) Create an XML deployment descriptor for the application.

The deployment descriptor must be named application.xml and must reside in the top level of the
META-INF directory of the application .ear file. The deployment descriptor must be a valid XML
document according to the XML schema for a Jakarta EE application XML document. (Alternatively,
the deployment descriptor may meet the requirements of previous versions of Jakarta EE.)

Many applications that follow the conventions described below will not need a deployment
descriptor for the application. The deployment tool will determine the components of the
application using some simple rules.

1. Package the application.

2. Place the Jakarta EE modules and the deployment descriptor in the appropriate directories.

3. Package the application directory hierarchy in a file using the JAR file format. The file should be
named with a .ear filename extension.

4. (Optional) Create an alternate deployment descriptor (“alt-dd”) for the application, external to
the packaged application.

8.4.2. Adding and Removing Modules

After the application is created, Jakarta EE modules may be added or removed before deployment.
When adding or removing a module the following steps must be performed:

1. Decide on a location in the application package for the new module. Optionally create new
directories in the application package hierarchy to contain any Jakarta EE modules that are
being added to the application.

2. Ensure that the name of the new module does not conflict with any of the existing modules,
either by choosing an appropriate default filename for the module or by explicitly specifying
the module name in the module’s deployment descriptor or in an alternate deployment
descriptor.

3. Copy the new Jakarta EE modules to the desired location in the application package. The
packaged modules are inserted directly in the desired location; the modules are not
unpackaged.

4. Edit the deployment descriptors for the Jakarta EE modules to link the dependencies which are
internally satisfied by the Jakarta EE modules included in the application.

5. Edit the Jakarta EE application deployment descriptor (if included) to meet the content
requirements of the Jakarta EE and the validity requirements of the Jakarta EE application XML
DTD or schema.

8.5. Deployment
The Jakarta EE supports three types of deployment units:

• Stand-alone Jakarta EE modules.

• Jakarta EE applications, consisting of one or more Jakarta EE modules.

166

• Class libraries packaged as .jar files according to the Extension Mechanism Architecture . These
class libraries then become installed libraries.

Any Jakarta EE product must be able to accept a Jakarta EE application delivered as a .ear file or a
stand-alone Jakarta EE module delivered as a .jar , .war , or .rar file (as appropriate to its type),
together with an optional alternate deployment descriptor external to the application or standalone
Jakarta EE module. If the application is delivered as a .ear , an enterprise bean module delivered as
a .jar file, a web application delivered as a .war file, or an application client delivered as a .jar file,
the deployment tool must be able to deploy the application such that the Jakarta classes in the
application are in a separate namespace from classes in other Jakarta applications. Typically this
will require the use of a separate class loader for each application. Standalone resource adapters
delivered in .rar files and standalone class libraries delivered in .jar files that become installed
libraries will of necessity appear in the class namespaces of applications that use them, and may
appear in the class namespace of any application depending on the level of isolation supported by
the Jakarta EE product.

As described in Jakarta EE Product Packaging, the Jakarta EE product might depend on external
services to meet the requirements of this specification. While the Jakarta EE product is not required
to assure the availability of these services, it is required to ensure that these services have been
configured for use. Deployment of applications must fail if such required services have not been
configured for use.

Deployment may provide an option that controls whether or not an application is attempted to be
started during deployment. If no such option is provided or if the option to start the application is
specified, and if deployment is successful, the application modules must be initialized as specified
in section Module Initialization and the application must be started.

If the application is attempted to be started during deployment, the Jakarta Servlet and Jakarta
Enterprise Beans containers must be initialized during deployment. Such initialization must
include CDI initialization. If initialization fails, deployment must fail.

If the application is not attempted to be started during deployment, these containers must not be
initialized during deployment.

In all cases, the deployment and initialization of a Jakarta EE application must be complete before
the container delivers client requests to any of the application’s components. The container must
first initialize all startup-time singleton session bean components before delivering any requests to
enterprise bean components. Containers must deliver requests to web components and resource
adapters only after initialization of the component has completed.

The optional Jakarta EE Deployment API describes how a product-independent deployment tool
accepts plugins for a specific Jakarta EE product, and how the tool and those plugins cooperate to
deploy Jakarta EE applications. The requirements in this specification that refer to a deployment
tool are meant to refer to the combination of any vendor-provided product-independent
deployment tool and the vendor-specific deployment plugin for this tool, as well as any other
vendor-specific deployment tools provided with the Jakarta EE product.

Typically a deployment tool will copy the deployed application or module to a product-specific
location, along with the configuration settings and customizations specified by the Deployer. In

167

some cases a deployment tool might include Application Assembly functionality as well, allowing
the Deployer to construct, modify, or customize the application before deployment. Still, it must be
possible to deploy a portable Jakarta EE application, module, or library containing no product-
specific deployment information without modifying the original files or artifacts that the Deployer
specified to the deployment tool.

The deployment tools for Jakarta EE containers must validate the deployment descriptors against
the Jakarta EE deployment descriptor schemas or DTDs that correspond to the deployment
descriptors being processed. The appropriate schema or DTD is chosen by analyzing the
deployment descriptor to determine which version it claims to conform to. Validation errors must
cause an error to be reported to the Deployer. The deployment tool may allow the Deployer to
correct the error and continue deployment. Note that the deployment descriptor version refers only
to the version of the XML schema or DTD against which the descriptor is to be validated. It does not
provide any information as to what version of the Jakarta EE the application is written to.

Some deployment descriptors are optional. The required deployment information is determined by
using default rules or by annotations present on application class files. Some deployment
descriptors that are included in an application may exist in either complete or incomplete form. A
complete deployment descriptor provides a complete description of the deployment information; a
deployment tool must not examine class files for this deployment information. An incomplete
deployment descriptor provides only a subset of the required deployment information; a
deployment tool must examine the application class files for annotations that specify deployment
information.

If annotations are being processed (as required by Deployment Descriptor Processing
Requirements, Jakarta Servlet Table 8-1, and Jakarta Enterprise Beans Tables 16 and 17), at least all
of the classes specified in Component classes supporting injection must be scanned for annotations
that specify deployment information. As specified in section Deploying a Jakarta EE Application, all
classes that can be used by the application may optionally be scanned for these annotations. (These
are the annotations that specify information equivalent to what can be specified in a deployment
descriptor. This requirement says nothing about the processing of annotations that were defined
for other purposes.) These annotations may appear on classes, methods, and fields. All resources
specified by resource definition annotations must be created. All resource reference annotations
must result in JNDI entries in the corresponding namespace. If the corresponding namespace is not
available to the class declaring or inheriting the reference, the resulting behavior is undefined.
Future versions of this specification may alter this behavior.

Any deployment information specified in a deployment descriptor overrides any deployment
information specified in an application’s class files. The Jakarta EE component specifications,
including this specification, describe when deployment descriptors are optional and which
deployment descriptors may exist in either complete or incomplete form. The attribute metadata-
complete is used in the deployment descriptor to specify whether the descriptor is complete. The
metadata-complete attribute in the standard deployment descriptors effects only the scanning of
annotations that specify deployment information, including web services deployment information.
It has no impact on the scanning of other annotations.

The scope of the metadata-complete attribute is the descriptor it appears in. For historical reasons,
the webservices.xml deployment descriptor does not have its own metadata-complete attribute;
instead, it defers to the value of the metadata-complete attribute in the module’s deployment

168

descriptor. Specifications that define their own additional deployment descriptors should provide a
metadata-complete attribute of their own, if deemed useful, with the appropriate semantics.

8.5.1. Deploying a Stand-Alone Jakarta EE Module

This section specifies the requirements for deploying a stand-alone Jakarta EE module.

1. The deployment tool must first read the Jakarta EE module deployment descriptor if provided
externally to the package or if present in the package. See the component specifications for the
required location and name of the deployment descriptor for each component type.

2. If the deployment descriptor is absent, or is present and is a Java EE 5 or later version
descriptor and the metadata-complete attribute is not set to true , the deployment tool must
examine all the class files in the application package. Any annotations that specify deployment
information must be logically merged with the information in the deployment descriptor (if
present). The correspondence of annotation information with deployment descriptor
information, as well as the overriding rules, are described in this and other Jakarta EE
specifications. The result of this logical merge process provides the deployment information
used in subsequent deployment steps. Note that there is no requirement for the merge process
to produce a new deployment descriptor, although that might be a common implementation
technique.

3. When deploying a standalone module, the module name is used as the application name. The
deployment tool must ensure that the application name is unique in the application server
instance. If the name is not unique, the deployment tool may automatically choose a unique
name or allow the Deployer to choose a unique name, but must not fail the deployment. This
ensures that existing modules continue to be deployable.

4. The deployment tool must deploy all of the components listed in the Jakarta EE module
deployment descriptor, or marked via annotations and discovered as described in the previous
requirement, according to the deployment requirements of the respective Jakarta EE
component specification. If the module is a type that contains JAR format files (for example,
web and connector modules), all classes in .jar files within the module referenced from other
JAR files within the module using the Class-Path manifest header must be included in the
deployment. If the module, or any JAR format files within the module, declares a dependency on
an installed library, that dependency must be satisfied.

5. The deployment tool must allow the Deployer to configure the container to provide the
resources and configuration values needed for each component. The required resources and
configuration parameters are specified in the deployment descriptor or via annotations
discovered in requirement 2.

6. The deployment tool must allow the Deployer to deploy the same module multiple times, as
multiple independent applications, possibly with different configurations. For example, the
enterprise beans in an ejb-jar file might be deployed multiple times under different JNDI names
and with different configurations of their resources.

8.5.2. Deploying a Jakarta EE Application

This section specifies the requirements for deploying a Jakarta EE application.

169

1. The deployment tool must first read the Jakarta EE application deployment descriptor provided
externally to the application .ear file or from within the application .ear file (META-
INF/application.xml). If the deployment descriptor is present, it fully specifies the modules
included in the application. If no deployment descriptor is present, the deployment tool uses the
following rules to determine the modules included in the application.

2. All files in the application package with a filename extension of .war are considered web
modules. The context root of the web module is the module name (see Component Creation).

3. All files in the application package with a filename extension of .rar are considered resource
adapters.

4. A directory named lib is considered to be the library directory, as described in Bundled
Libraries.

5. For all files in the application package with a filename extension of .jar , but not contained in
the lib directory, do the following:

6. If the .jar file contains a META-INF/MANIFEST.MF file with a Main-Class attribute, or contains a
META-INF/application-client.xml file, consider the .jar file to be an application client module.

7. If the .jar file contains a META-INF/ejb-jar.xml file, or contains any class with an Jakarta
Enterprise Beans component-defining annotation (Stateless , etc.), consider the .jar file to be an
Jakarta Enterprise Beans module.

8. All other .jar files are ignored unless referenced by a JAR file discovered above using one of the
JAR file reference mechanisms such as the Class-Path header in a manifest file.

9. The deployment tool must ensure that the application name is unique in the application server
instance. If the name is not unique, the deployment tool may automatically choose a unique
name or allow the Deployer to choose a unique name, but must not fail the deployment. This
ensures that existing applications continue to be deployable.

10. The deployment tool must open each of the Jakarta EE modules listed in the Jakarta EE
application deployment descriptor or discovered using the rules above and read the Jakarta EE
module deployment descriptor, if present in the package. See the Enterprise Jakarta Beans,
Jakarta Servlet, Jakarta Connector and application client specifications for the required location
and name of the deployment descriptor for each component type. Deployment descriptors are
optional for all module types. (The application client specification is Application Clients.)

11. If the module deployment descriptor is absent, or is present and is a Java EE 5 or later version
descriptor and the metadata-complete attribute is not set to true , the deployment tool must
examine all the class files in the application package that can be used by the module (that is, all
class files that are included in the .ear file and can be referenced by the module, such as the
class files included in the module itself, class files referenced from the module by use of a Class-
Path reference, class files included in the library directory, etc.). Any annotations that specify
deployment information must be logically merged with the information in the deployment
descriptor (if present). Note that the presence of component-declaring annotations in shared
artifacts, such as libraries in the library directory and libraries referenced by more than one
module through Class-Path references, can have unintended and undesirable consequences and
is not recommended. The correspondence of annotation information with deployment
descriptor information, as well as the overriding rules, are described in this and other Jakarta
EE specifications. The result of this logical merge process provides the deployment information
used in subsequent deployment steps. Note that there is no requirement for the merge process

170

to produce a new deployment descriptor, although that might be a common implementation
technique.

12. The deployment tool must install all of the components described by each module deployment
descriptor, or marked via annotations and discovered as described in the previous requirement,
into the appropriate container according to the deployment requirements of the respective
Jakarta EE component specification. All classes in .jar files or directories referenced from other
JAR files using the Class-Path manifest header must be included in the deployment. If the .ear
file, or any JAR format files within the .ear file, declares a dependency on an installed library,
that dependency must be satisfied.

13. The deployment tool must allow the Deployer to configure the container to provide the
resources and configuration values needed for each component. The required resources and
configuration parameters are specified in the deployment descriptor or via annotations
discovered in requirement 3.

14. The deployment tool must allow the Deployer to deploy the same Jakarta EE application
multiple times, as multiple independent applications, possibly with different configurations. For
example, the enterprise beans in an ejb-jar file might be deployed multiple times under
different JNDI names and with different configurations of their resources.

15. When presenting security role descriptions to the Deployer, the deployment tool must use the
descriptions in the Jakarta EE application deployment descriptor rather than the descriptions in
any module deployment descriptors for security roles with the same name. However, for
security roles that appear in a module deployment descriptor but do not appear in the
application deployment descriptor, the deployment tool must use the description provided in
the module deployment descriptor.

The jakarta name is a trademarked name that has restrictions on its usage. For
Jakarta EE, the specification projects produce APIs that utilize the jakarta.*
namespace. As defined in the Jakarta EE Specification Process 1.3, APIs artifacts
(API jars, javadoc, schemas) produced by a specification project are the only
artifacts that must make use of the jakarta.* package namespace. The jakarta
namespace must not be used for any deployment, including applications, TCKs,
tools, libraries or any other assets. Attempting to deploy an application under the
jakarta.* package namespace may result in deployment error or other unspecified
behavior.

8.5.3. Deploying a Library

This section specifies the requirements for deploying a library.

1. The deployment tool must record the extension name and version information from the
manifest file of the library JAR file. The deployment tool must make the library available to
other Jakarta EE deployment units that request it according to the version matching rules
described in the Optional Package Versioning specification. Note that the library itself may
include dependencies on other libraries and these dependencies must also be satisfied.

2. The deployment tool must make the library available with at least the same security
permissions as any application or module that uses it. The library may be installed with the full
security permissions of the container.

171

3. Not all libraries will be deployable on all Jakarta EE products at all times. Libraries that conflict
with the operation of the Jakarta EE product may not be deployable. For example, an attempt to
deploy an older version of a library that has subsequently been included in the Jakarta EE
specification may be rejected. Similarly, deployment of a library that is also used in the
implementation of the Jakarta EE product may be rejected. Deployment of a library that is in
active use by an application may be rejected.

8.5.4. Module Initialization

After a successful deployment, all the modules of an application other than application client
modules are initialized. The specifications for the different module types describe the steps
required to initialize a module. By default, the order of initialization of modules in an application is
unspecified. In rare cases it may be important that modules are initialized in a certain order, for
example, if a component in one modules uses a component in another module during its
initialization. An application can declare that modules must be initialized in the order they’re listed
in the application deployment descriptor by including the <initialize-in-order>true</initialize-in-
order> element in the application deployment descriptor. If the application deployment descriptor
specifies a module initialization order that conflicts with the initialization order specified by any of
the modules (for example, by the use of the Jakarta Enterprise Beans DependsOn annotation), the
deployment tool must report an error. Application client modules are initialized on their own
schedule, typically when an end user invokes them; as such, they are excluded from any
initialization ordering requirements.

8.6. Jakarta EE Application XML Schema
The XML grammar for a Jakarta EE application deployment descriptor is defined by the Jakarta EE
application schema. The root element of the deployment descriptor for a Jakarta EE application is
application . The granularity of composition for Jakarta EE application assembly is the Jakarta EE
module. A Jakarta EE application deployment descriptor contains a name and description for the
application and the URI of a UI icon for the application, as well a list of the Jakarta EE modules that
comprise the application. The content of the XML elements is in general case sensitive. This means,
for example, that <role-name>Manager</role-name> is a different role than <role-
name>manager</role-name> .

All valid Jakarta EE application deployment descriptors must conform to the XML Schema
definitions as defined by Previous Version Deployment Descriptors. The deployment descriptor
must be named META-INF/application.xml in the .ear file. Note that this name is case-sensitive. The
XML Schema located at https://jakarta.ee/xml/ns/jakartaee/application_11.xsd defines the XML
grammar for a Jakarta EE application deployment descriptor.

Jakarta EE Application XML Schema Structure shows a graphic representation of the structure of
the Jakarta EE application XML schema.

172

https://jakarta.ee/xml/ns/jakartaee/application_11.xsd

application-name?

description*

display-name*

icon*

small-icon?

large-icon?

initialize-in-order?

module+

connector | ejb | java | web

web-uri

context-root

alt-d?

security-role*

description*

role-name

library-directory?

env-entry*

description*

env-entry-name

env-entry-type?

env-entry-value?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

ejb-ref*

description*

ejb-ref-name

ejb-ref-type?

home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

remote?

ejb-link?
ejb-local-ref*

description*

ejb-ref-name

ejb-ref-type?

local-home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

local?

ejb-link?

service-ref* (see schema for details)

resource-ref*

description*

res-ref-name

res-type?

res-auth?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

res-sharing-scope?

resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-ref*

description*

message-destination-ref-name

message-destination-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-usage?

message-destination-link?

persistence-unit-ref*

description*

persistence-unit-ref-name

persistence-unit-name?

mapped-name?

injection-target*

injection-target-class

injection-target-name

persistence-context-ref*

description*

persistence-context-ref-name

persistence-unit-name?

persistence-property

name

value

persistence-context-type?

persistence-context-synchronization?

post-construct*
lifecycle-calback-class?

lifecycle-calback-method

pre-destroy*
lifecycle-calback-class?

lifecycle-calback-method

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

data-source* (see schema for details)

jms-connection-factory* (see schema for details)

jms-destination* (see schema for details)

mail-session* (see schema for details)

connector-resource* (see schema for details)

admistered-object* (see schema for details)

application

Figure 11. Jakarta EE Application XML Schema Structure

173

8.7. Common Jakarta EE XML Schema Definitions
The XML Schema located at https://jakarta.ee/xml/ns/jakartaee/jakartaee_11.xsd defines types that
are used by many other Jakarta EE deployment descriptor schemas, both in this specification and in
other specifications.

174

https://jakarta.ee/xml/ns/jakartaee/jakartaee_11.xsd

Chapter 9. Profiles
This chapter describes the requirements common to all Jakarta™ EE profiles. It does not define any
concrete profiles, delegating this task to separate specifications.

The Jakarta EE Web Profile Specification, published in conjunction with the present specification,
defines the first Jakarta EE profile, the Web Profile.

The Jakarta EE Core Profile Specification is a minimal profile that is published separately from the
Web Profile and this Platform specification.

The definition of other profiles is left to future specifications.

9.1. Introduction
A Jakarta EE profile (from now on, simply “a profile”) represents a configuration of the platform
suited to a particular class of applications.

A profile may contain a proper subset of the technologies contained in the platform. By doing so, a
profile can effectively drop technologies which the platform supports but which are not generally
useful in a particular domain.

A profile may also add one or more technologies which are not present in the platform itself. For
example, a hypothetical Jakarta EE Portal Profile would likely include the Portlet API (JSR-362).

Additionally, a profile may tag certain technologies as optional. In this case, products implementing
the profile may or may not include the technology in question. Naturally, if they do, they need to
obey all the relevant requirements mandated by the profile specification.

A product may implement two or more Jakarta EE profiles, or the full platform and one or more
Jakarta EE profiles, as long as their combined requirements do not give rise to conflicts.

9.2. Profile Definition
A profile is defined in accordance with the rules of the Jakarta EE Specification Process. Typically, a
proposal to create a new profile, or to revise an existing one, will be submitted as a Jakarta
Specification Project. Once the Project is approved, a group of interested parties will be formed and
conduct work as dictated by the process. The Project proposal for a profile must mention the
version of the Jakarta EE Platform that it builds on. Additionally, if it builds on an existing profile, it
must mention this fact as well.

Although profiles can be created and evolved independently of the Jakarta EE platform, modulo the
rules contained in this specification, it is envisioned that profiles will maintain a reasonable level of
alignment with the platform itself, in order to avoid fragmenting the development space into
progressively incompatible islands. To this end, a profile must build on the most recent version of
the Jakarta EE platform available at the time the Project for the profile is approved. It is also
recommended that profile community groups go beyond this requirement and, as much as it is
practical, ensure that their profile builds on the most recent version of the Jakarta EE platform at

175

the time the profile is finalized.

9.3. General Rules for Profiles
A profile must include all technologies that are required components of the Jakarta EE platform or
of any profiles on which it builds. These technologies will be listed as required in the profile.

A profile may promote to required status any technologies that are optional components of the
Jakarta EE platform or of any profile on which it builds.

Unless otherwise mandated by a profile, any technologies that are optional components of the
Jakarta EE platform, or of any profile on which the profile in question builds, must be optional
components of the profile itself.

A profile may include as a required or as an optional component any technology outside of those
included in the Jakarta EE platform or any profile on which it builds, as long as the corresponding
compatibility requirements are satisfied.

A profile must preserve any requirements defined in the Jakarta EE platform specification, or in the
specification of any profile on which it builds, as long as the preconditions for those requirements
are satisfied. Typically, the preconditions will involve the presence of one or more technologies
among those included in the profile. Unconditional requirements must be obeyed unconditionally.

A profile may add any requirements that pertain to one or more technologies whose inclusion it
allows or requires. Such requirements must not conflict with those set by the Jakarta EE platform
or by any profile on which the present one builds.

The specification for individual technologies may allow for certain features of the technology in
question to be optional. In this case, a profile may promote one or more of these features to
required status, assuming the Jakarta EE platform or any profile on which it builds hasn’t done so
already.

A profile must not conflict with the specifications for any technologies it includes either as required
or optional components. Therefore, unless the specification for an individual technology explicitly
allows for certain features or sets of requirements to be optionally implementable, a profile must
not itself attempt to redefine any such features or requirements. For example, a profile may not
allow omitting a package or type or method from an API specified elsewhere, unless the
specification for that API explicitly allows for this to happen.

Although the Platform specification does not define any APIs, a profile may do so. Since such an API
would be available only in profiles that build on the one that defines it, this approach limits the
reusability of the API and thus is discouraged.

9.4. Expression of Requirements
The present specification uses the following conventions when expressing requirements that
pertain to one or more technologies included in the platform:

• Chapters or sections which are conditional on the presence of a specific technology are marked

176

as such at the very beginning. The condition is then intended to stay in force until the next
textual unit at the same logical level (e.g. the following chapter, or section, etc.).

• Individual paragraphs and sentences are deemed to be conditional on any technologies they
mention, unless otherwise indicated.

• Section or paragraphs which discuss examples, or are otherwise non-normative, do not contain
any requirements.

9.5. Requirements for All Jakarta EE Profiles
The Java Platform, Standard Edition 11 is the required API compilation level for any Jakarta EE
profile.

The following technologies are required to be present in all Jakarta EE profiles:

• Component lifecycle annotations defined by the Jakarta Annotations specification (
PostConstruct, PreDestroy)

9.6. Optional Features for Jakarta EE Profiles
All the technologies listed in Required APIs, and not designated as required in Requirements for All
Jakarta EE Profiles, are designated as optional for use in Jakarta EE profiles.

The following functionality is designated as optional for use in Jakarta EE profiles:

• CORBA requirements (see OMG Protocols)

• Support for java:comp/ORB (see ORB References)

9.7. Full Jakarta™ EE Product Requirements
This section defines the requirements for full Jakarta EE platform products. These requirements
correspond to the full set of requirements in previous versions of the Jakarta EE platform
specification and update those requirements for this new version of the platform.

Please note that, due to the effects of the feature lifecycle process, future versions of the Jakarta EE
specification will likely relax the requirements given here, specifically by marking as optional
technologies that are required by the present specification. The set of technologies that have been
made optional and/or identified as proposed optional is given in Optional Java Technologies.

The following technologies are required:

• Jakarta Activation 2.1

• Jakarta Annotations 3.0*

• Jakarta Authentication 3.1*

• Jakarta Authorization 3.0*

• Jakarta Batch 2.1

177

• Jakarta Concurrency 3.1*

• Jakarta Connectors 2.1

• Jakarta Contexts and Dependency Injection 4.1*

• Jakarta Data 1.0*

• Jakarta Debugging Support for Other Languages 2.0

• Jakarta Dependency Injection 2.0

• Jakarta Enterprise Beans 4.0 (except for Jakarta Enterprise Beans entity beans and associated
Jakarta Enterprise Beans QL, and embedded container, which have been made removed)

• Jakarta Expression Language 6.0*

• Jakarta Interceptors 2.2*

• Jakarta JSON Processing 2.1

• Jakarta JSON Binding 3.0

• Jakarta Mail 2.1

• Jakarta Messaging 3.1

• Jakarta Persistence 3.2*

• Jakarta RESTful Web Services 4.0*

• Jakarta Security 4.0*

• Jakarta Servlet 6.1*

• Jakarta Server Faces 4.1*

• Jakarta Server Pages 4.0*

• Jakarta Standard Tag Library 3.0

• Jakarta Transactions 2.0

• Jakarta Validation 3.1*

• Jakarta WebSocket 2.2*

Note: technologies with an asterisk after them represent updated versions.

The following technologies are deprecated: * NONE

The following technologies are removed:

• Jakarta Enterprise Beans 2.x API group

• Jakarta Enterprise Beans 3.2 and earlier entity beans and associated Jakarta Enterprise Beans
QL

• Jakarta Enterprise Web Services

• Jakarta Managed Beans

• Jakarta SOAP with Attachments

• Jakarta XML Binding

178

• Jakarta XML Web Services

Besides the Jakarta Managed Beans specification, Jakarta EE platform products can continue to
support the removed specifications just like any other standalone specification that is not part of
the platform.

179

Chapter 10. Application Clients
This chapter describes application clients in the Jakarta™ Enterprise Edition (Jakarta EE).

A full Jakarta EE product must support the application client container as described in this chapter.
A Jakarta EE profile may or may not require support for the application client container.

10.1. Overview
Application clients are first tier client programs that execute in their own Java™ virtual machines.
Application clients follow the model for Java technology-based applications: they are invoked at
their main method and run until the virtual machine is terminated. However, like other Jakarta EE
application components, application clients depend on a container to provide system services. The
application client container may be very light-weight compared to other Jakarta EE containers,
providing only the security and deployment services described below.

10.2. Security
The Jakarta EE authentication requirements for application clients are the same as for other Jakarta
EE components, and the same authentication techniques may be used as for other Jakarta EE
application components.

No authentication is necessary when accessing unprotected web resources. When accessing
protected web resources, the usual varieties of authentication may be used, namely HTTP Basic
authentication, SSL client authentication, or HTTP Login Form authentication. Lazy authentication
may be used.

Authentication is required when accessing protected enterprise beans. The authentication
mechanisms for enterprise beans include those required in the Jakarta Enterprise Beans
specification for enterprise bean interoperability. Lazy authentication may be used.

An application client makes use of an authentication service provided by the application client
container for authenticating its users. The container’s service may be integrated with the native
platform’s authentication system, so that a single signon capability is employed. The container may
authenticate the user when the application is started, or it may use lazy authentication,
authenticating the user when a protected resource is accessed. This specification does not describe
the technique used to authenticate the user, although a later version may do so.

If the container interacts with the user to gather authentication data, the container must provide an
appropriate user interface. In addition, an application client may provide a class that implements
the javax.security.auth.callback.CallbackHandler interface and specify the class name in its
deployment descriptor (see Jakarta EE Application Client XML Schema for details). The Deployer
may override the callback handler specified by the application and use the container’s default
authentication user interface instead.

If a callback handler is configured by the Deployer, the application client container must instantiate
an object of this class and use it for all authentication interactions with the user. The application’s
callback handler must fully support Callback objects specified in the javax.security.auth.callback

180

package.

Note that when HTTP Login Form authentication is used, the authentication user interface provided
by the server (in the form of an HTML page delivered in response to an HTTP request) must be
displayed by the application client.

10.3. Transactions
Application clients are not required to have direct access to the transaction facilities of the Jakarta
EE platform. A Jakarta EE product is not required to provide a Jakarta Transactions
UserTransaction object for use by application clients. Application clients can invoke enterprise
beans that start transactions, and they can use the transaction facilities of the JDBC API. If a JDBC
API transaction is open when an application client invokes an enterprise bean, the transaction
context is not required to be propagated to the Jakarta Enterprise Beans server.

10.4. Resources, Naming, and Injection
As with all Jakarta EE components, application clients use JNDI to look up enterprise beans, get
access to resource managers, reference configurable parameters set at deployment time, and so on.
Application clients use the java: JNDI namespace to access these items (see Resources, Naming, and
Injection for details).

Injection is also supported for the application client main class. Because the application client
container does not create instances of the application client main class, but merely loads the class
and invokes the static main method, injection into the application client class uses static fields and
methods, unlike other Jakarta EE components. Injection occurs before the main method is called.

10.5. Application Programming Interfaces
Application clients have all the facilities of the Java™ Platform, Standard Edition (subject to security
restrictions), as well as various standard extensions, as described in Chapter EE.6 “Application
Programming Interface.” Each application client executes in its own Java virtual machine.
Application clients start execution at the main method of the class specified in the Main-Class
attribute in the manifest file of the application client’s JAR file (although note that application client
container code will typically execute before the application client itself, in order to prepare the
environment of the container, initialize the name service client library, and so on).

10.6. Packaging and Deployment
Application clients are packaged in JAR format files with a .jar extension and may include a
deployment descriptor similar to other Jakarta EE application components. The deployment
descriptor describes the enterprise beans, web services, and other types of external resources
referenced by the application. If the deployment descriptor is not included, or is included but not
marked metadata-complete , annotations on the main class of the application client may also be
used to describe the resources needed by the application. As with other Jakarta EE application
components, access to resources must be configured at deployment time, names assigned for
enterprise beans and resources, and so on.

181

The following table describes the cases the deployment tool must consider when deciding whether
or not to process annotations on the application client main class. Whether or not to process
annotations depends on the presence and version of the deployment descriptor and the setting of
the metadata-complete attribute.

Table 7. Deployment Descriptor Processing Requirements

Deployment descriptor metadata-complete? process annotations?

application-client_1_2 N/A No

application-client_1_3 N/A No

application-client_1_4 N/A No

application-client_5 Yes No

application-client_5 No Yes

application-client_6 Yes No

application-client_6 No Yes

application-client_7 Yes No

application-client_7 No Yes

application-client_8 Yes No

application-client_8 No Yes

application-client_9 Yes No

application-client_9 No Yes

none N/A Yes

The metadata-complete attribute defines whether the application client deployment descriptor is
complete, or whether the class files available to the application client module should be examined
for annotations that specify deployment information. Deployment information, in this sense, refers
to any information that could have been specified by the application client deployment descriptor
for the module.

If the value of the metadata-complete attribute is specified as “true” , the deployment tool must
ignore any annotations that specify such deployment information in the class files packaged in the
application client jar file. Such annotations must also be ignored when processing the class files
that are available to the application client module for the deployment of this module according to
Deploying a Jakarta EE Application.

Note that a "true" value for the metadata-complete attribute does not preempt the processing of all
annotations, only those that specify deployment information.

The list of annotations to which the metadata-complete attribute applies currently includes the
following:

• jakarta.annotation.PostConstruct

• jakarta.annotation.PreDestroy

182

• jakarta.annotation.Resource

• jakarta.annotation.Resources

• jakarta.annotation.sql.DataSourceDefinition

• jakarta.annotation.sql.DataSourceDefinitions

• jakarta.ejb.EJB

• jakarta.ejb.EJBs

• jakarta.jms.JMSConnectionFactoryDefinition

• jakarta.jms.JMSConnectionFactoryDefinitions

• jakarta.jms.JMSDestinationDefinition

• jakarta.jms.JMSDestinationDefinitions

• jakarta.mail.MailSessionDefinition

• jakarta.mail.MailSessionDefinitions

• jakarta.persistence.PersistenceUnit

• jakarta.persistence.PersistenceUnits

• jakarta.resource.AdministeredObjectDefinition

• jakarta.resource.AdministeredObjectDefinitions

• jakarta.resource.ConnectionFactoryDefinition

• jakarta.resource.ConnectionFactoryDefinitions

• All annotations in the following packages:

◦ jakarta.jws

◦ jakarta.jws.soap

◦ jakarta.xml.ws

◦ jakarta.xml.ws.soap

◦ jakarta.xml.ws.spi

If the metadata-complete attribute is not specified or its value is "false" , the deployment tool must
examine the class files for all such annotations.

The tool used to deploy an application client to the client machine, and the mechanism used to
install the application client, is not specified. Very sophisticated Jakarta EE products may allow the
application client to be deployed on a Jakarta EE server and automatically made available to some
set of (usually intranet) clients. Other Jakarta EE products may require the Jakarta EE application
bundle containing the application client to be manually deployed and installed on each client
machine. And yet another approach would be for the deployment tool on the Jakarta EE server to
produce an installation package that could be used by each client to install the application client.
There are many possibilities here and this specification doesn’t prescribe any one. It only defines
the package format for the application client and the things that must be possible during the
deployment process.

How an application client is invoked by an end user is unspecified. Typically a Jakarta EE Product

183

Provider will provide an application launcher that integrates with the application client machine’s
native operating system, but the level of such integration is unspecified.

10.7. Jakarta EE Application Client XML Schema
The XML grammar for a Jakarta EE application client deployment descriptor is defined by the
Jakarta EE application-client schema. The root element of the deployment descriptor for an
application client is application-client . The content of the XML elements is in general case sensitive.
This means, for example, that <res-auth>Container</res-auth> must be used, rather than <res-
auth>container</res-auth> .

All valid application-client deployment descriptors must conform to the XML Schema definition, or
to a DTD or schema definition from a previous version of this specification. (See Previous Version
Deployment Descriptors.) The deployment descriptor must be named META-INF/application-
client.xml in the application client’s .jar file. Note that this name is case-sensitive.

Jakarta EE Application Client XML Schema Structure shows the structure of the Jakarta EE
application-client XML Schema. The Jakarta EE application-client XML Schema is located at
https://jakarta.ee/xml/ns/jakartaee/application-client_10.xsd.

184

https://jakarta.ee/xml/ns/jakartaee/application-client_10.xsd

module-name?

description*

display-name*

icon*

small-icon?

large-icon?

env-entry*

description*

env-entry-name

env-entry-type?

env-entry-value?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

ejb-ref*
description*

ejb-ref-name

ejb-ref-type?

home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

remote?

ejb-link?

service-ref* (see schema for details)

resource-ref*

description*

res-ref-name

res-type?

res-auth?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

res-sharing-scope?

resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-ref*

description*

message-destination-ref-name

message-destination-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-usage?

message-destination-link?

persistence-unit-ref*

description*

persistence-unit-ref-name

persistence-unit-name?

mapped-name?

injection-target*

injection-target-class

injection-target-name

post-construct*
lifecycle-calback-class?

lifecycle-calback-method

pre-destroy*
lifecycle-calback-class?

lifecycle-calback-method

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

data-source* (see schema for details)

jms-connection-factory* (see schema for details)

jms-destination* (see schema for details)

mail-session* (see schema for details)

connector-resource* (see schema for details)

application-client

Figure 12. Jakarta EE Application Client XML Schema Structure

185

Chapter 11. Service Provider Interface
The Jakarta™ EE Platform includes several technologies that are primarily intended to be used to
extend the capabilities of the Jakarta EE containers. In addition, some Jakarta EE technologies
include service provider interfaces along with their application programming interfaces. A Jakarta
EE profile may include some or all of these facilities, as described in Profiles.

11.1. Jakarta™ Connectors
The Connector API defines how resource adapters are packaged and integrated with any Jakarta EE
product. Many types of service providers can be provided using the Connector API and packaging,
including JDBC drivers, Jakarta Messaging providers, and Jakarta XML Registries providers. All
Jakarta EE products must support the Connector APIs, as specified in the Connector specification.

The Jakarta EE Connectors specification is available at https://jakarta.ee/specifications/connectors/ .

11.2. Jakarta™ Authorization
The Jakarta Authorization specification defines the contract between a Jakarta EE container and an
authorization policy provider.

The Jakarta Authorization specification can be found at https://jakarta.ee/specifications/
authorization/ .

11.3. Jakarta™ Transactions
The Jakarta Transactions defines the TransactionSynchronizationRegistry interface that is intended
for use by system level application server components such as persistence managers, resource
adapters, as well as Jakarta Enterprise Beans and Web application components. This provides the
ability to register synchronization objects with special ordering semantics, associate resource
objects with the current transaction, get the transaction context of the current transaction, get
current transaction status, and mark the current transaction for rollback.

The Jakarta Transaction specification is available at https://jakarta.ee/specifications/transactions/ .

11.4. Jakarta™ Persistence
Jakarta Persistence provides interfaces in the jakarta.persistence.spi package that allow a
persistence provider to be plugged into the Jakarta Persistence framework.

The Jakarta Persistence specification can be found at https://jakarta.ee/specifications/persistence/ .

11.5. Jakarta™ Mail
The Jakarta Mail specification describes how Jakarta Mail protocol providers can be packaged and
distributed so that they can be discovered and used through the Jakarta Mail API. This allows the

186

https://jakarta.ee/specifications/connectors/
https://jakarta.ee/specifications/authorization/
https://jakarta.ee/specifications/authorization/
https://jakarta.ee/specifications/transactions/
https://jakarta.ee/specifications/persistence/

Jakarta Mail API to be extended with support for new mail protocols and mailbox formats.

The Jakarta Mail API specification is available at https://jakarta.ee/specifications/mail/ .

187

https://jakarta.ee/specifications/mail/

Chapter 12. Compatibility and Migration
This chapter summarizes compatibility and migration issues for the Jakarta™ EE platform. The
specifications for each of the component technologies included in Jakarta EE also describe
compatibility and migration issues for that technology in much more detail.

12.1. Compatibility
The word compatibility covers many different concepts. Jakarta EE products are compatible with
the Jakarta EE specification if they implement the APIs and behavior required by the specification.
Applications are compatible with a release of the Jakarta EE platform if they only depend on APIs
and behavior defined by that release of the platform. A new release of the Jakarta EE platform is
compatible with previous releases of the platform if all portable applications written to the
previous release of the platform will also run unchanged and with identical behavior on the new
release of the platform.

Compatibility is a core value of the Jakarta EE platform. A Jakarta EE product is required to support
portable applications written to previous versions of the platform. Compatibility and portability
work together to provide the Write Once, Run Anywhere value of the Jakarta EE platform. Jakarta
EE products conform to the Jakarta EE specifications by providing APIs and behavior as required by
the specifications. Portable applications depend only on the APIs and behavior required by the
Jakarta EE specifications. In general, portable applications written to a previous version of the
platform will continue to work without change and with identical behavior on the current version
of the platform.

12.1.1. Backwards Compatibility for Jakarta EE 11

12.1.1.1. Removed Technologies

• Jakarta Enterprise Web Services

• Jakarta Managed Beans

• Jakarta SOAP with Attachments

• Jakarta XML Binding

• Jakarta XML Web Services

Support for Jakarta Managed Beans was deprecated previously and is now removed from Jakarta
EE 11 platform. The jakarta.annotation.ManagedBean annotation is no longer provided with the
Jakarta Annotations 3.0 release. Applications using the ManagedBean annotation should transition
to another bean defining annotation such as jakarta.inject.Inject

Support for Jakarta XML Web Services, along with the Jakarta XML Binding and the SOAP with
attachments specifications, was made optional with the Jakarta EE 10 release, and is now removed
from the Jakarta EE 11 platform. Jakarta EE platform products can continue to support the XML
Web Services specifications to work with the Jakarta EE 11 platform just like other standalone
specifications that are not part of the platform.

188

12.1.2. Backwards Compatibility for Jakarta EE 10

12.1.2.1. Removed Technologies

• Entity Beans, both Container and Bean Managed Persistence (Jakarta Enterprise Beans 4.0,
Optional Features, Chapters 3 - 7)

• Embeddable EJB Container (Jakarta Enterprise Beans, Core Features 4.0, Chapter 17)

12.1.3. Backwards Compatibility for Jakarta EE 9

Due to the migration from the javax namespace to the jakarta namespace, Jakarta EE 9 is not
source-code compatible or binary compatible with previous releases. However, Jakarta EE 9 is
behavior compatible with all jakarta APIs present sharing identical method signatures and
behavior with their javax equivalents.

Applications migrating to Jakarta EE 9 from previous releases will require modification in the areas
detailed in the sections below.

12.1.3.1. javax to jakarta Namespace

The main requirement for Jakarta EE 9 was to change the javax namespace to the jakarta
namespace. This requirement demanded changes across all of the Specification documents, the
APIs, the Javadocs, the TCKs (Technology Compatibility Kits), and the CIs (Compatible
Implementations). In turn, this required change will also affect applications. For example, all import
statements will need to be updated to reflect the updated jakarta package names.

Properties

Java™ properties are often used to configure the features of Jakarta EE. In the past, many of these
properties were prefaced with javax. But now, along with the package name update, these property
names will be prefaced with jakarta. It is implementation-specific whether the old javax property
names will be honored in Jakarta EE 9 compatible implementations.

Schemas

Schemas (or XSDs or DTDs) are used by some of the Jakarta EE features to define the content and
format of their respective XML files. Previous versions of the schemas referenced the
http://xmlns.jcp.org/xml/ns/javaee/ and http://java.sun.com/xml/ns/javaee/ namespaces. Following
the jakarta namespace update requirement, Jakarta EE 9 also requires the schema namespace to be
updated to https://jakarta.ee/xml/ns/jakartaee. Accordingly, application deployment descriptors
will need to be updated to reference these updated namespaces. The complete list of updated
schemas for Jakarta EE 9 can be found here: https://jakarta.ee/xml/ns/jakartaee/#9

Jakarta EE 9 only requires past schema support to (Java EE™) Jakarta EE 8. Support
for schemas prior to Java EE 8 is not required.

12.1.3.2. Removed Technologies

The following technologies have been removed from Jakarta EE 9 to lower the bar of entry for new

189

http://xmlns.jcp.org/xml/ns/javaee/
http://java.sun.com/xml/ns/javaee/
https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/#9

compatible implementations. In most cases, this action removes the full Specification. While in
other cases, only a portion (chapter) of a Specification is removed. For Jakarta EE 9, the following
technologies were removed from the Platform:

• Jakarta XML Registries

• Jakarta XML RPC

• Jakarta Deployment

• Jakarta Management

• Support for Distributed Interoperability in the EJB 3.2 Core Specification, Chapter 10

Existing Compatible Implementations may decide to continue to support these removed
technologies, but there are no TCK tests in Jakarta EE 9 to verify compatibility. There is no
requirement for new Compatible Implementations to support these removed technologies.

12.1.3.3. Migration Tools

Compatible Implementations, IDEs, and other tools are providing mechanisms to make these
changes as painless as possible. One such effort is the Eclipse Transformer Project
(https://projects.eclipse.org/projects/technology.transformer). This framework aids with the binary
transformation of Java™ class files — replacing the javax. package references to the corresponding
jakarta. packages. In addition to being used with several of the Jakarta EE 9 Compatible
Implementations, the Transformer has also been used to transform test buckets and other utility
libraries.

12.2. Migration
Migration is the act of converting an application to use new facilities introduced in this release of
the platform. Given the required move from the javax namespace to the jakarta namespace in
Jakarta EE 9 and the removal of some technologies, some migration of applications may be
required. Some application servers may provide additional facilities to make this migration more
consumable. Still, an application will be better positioned for the future by converting it to use the
defined features of the Jakarta EE platform. Reference "Backwards Compatibility" for more
information.

Also, an application may be improved (better performance, simpler to develop, more flexible, etc.)
by converting it to use newer facilities of the Jakarta EE platform as outlined in the next
subsections.

12.2.1. Jakarta Persistence

Jakarta Persistence provides a much richer set of modeling capabilities and object/relational
mapping capabilities than EJB CMP entity beans and is significantly easier to use.

Support for EJB CMP and BMP entity beans has been made optional with the Java EE 7 release.
Support for EJB CMP 1.1 entity beans has been optional since Java EE 5. Applications are strongly
encouraged to migrate applications using EJB entity beans to Jakarta Persistence.

190

https://projects.eclipse.org/projects/technology.transformer

12.2.2. Jakarta XML Web Services (optional)

Jakarta XML Web Services, along with the Jakarta XML Binding and the Metadata for Web Services
specifications, provides simpler and more complete support for web services than is available using
the older JAX-RPC technology. Support for JAX-RPC was made optional with the Java EE 7 release,
and is now removed from the Jakarta EE 9 platform. Applications that provide web services using
JAX-RPC should consider migrating to the Jakarta XML Web Services API. Note that because both
technologies support the same web service interoperability standards, clients and services can be
migrated to the new API independently.

191

Chapter 13. Component Specification
Integration Requirements
This section defines the requirements between component specifications that are included in the
Platform.

This part of the document specifies additional rules or features when using CDI in a Jakarta EE
container. All content defined in [cdi-spec] applies to this part.

CDI implementations in Jakarta EE containers are required to support CDI Full.

13.1. CDI Extended Concepts for Jakarta EE
When running in Jakarta EE, the container must extend the concepts defined in [concepts] with:

• A Jakarta EE component is a bean if the lifecycle of its instances may be managed by the
container according to the lifecycle context model defined in [contexts]

• Contextual instances of a bean may be used in EL expressions that are evaluated in the same
context

• For some Jakarta EE components - like environment resources, defined in Resources - the
developer provides only the annotations and the bean implementation is provided by the
container.

13.1.1. Functionality provided by the container to the bean in Jakarta EE

When running in Jakarta EE, the container must extend the capabilities defined in [capabilities], by
providing:

• scoped resolution by bean name when used in a Unified EL expression, as defined by
[name_resolution].

13.1.2. Bean types for Jakarta EE component

As managed beans, EJB session beans may have multiple bean types depending on their client-
visible types. For instance, this session bean has only the local interfaces BookShop and Auditable,
along with Object, as bean types, since the bean class is not a client-visible type.

@Stateful
public class BookShopBean
 extends Business
 implements BookShop, Auditable {
 ...
}

The rules for determining the (unrestricted) set of bean types for Jakarta EE components are
defined in Bean types of a session bean and Bean types of a resource.

192

13.1.3. Scopes

Jakarta EE components such as servlets, EJBs and JavaBeans do not have a well-defined scope.
These components are either:

• singletons, such as EJB singleton session beans, whose state is shared between all clients,

• stateless objects, such as servlets and stateless session beans, which do not contain client-visible
state, or

• objects that must be explicitly created and destroyed by their client, such as JavaBeans and
stateful session beans, whose state is shared by explicit reference passing between clients.

CDI scopes add to Jakarta EE these missing well-defined lifecycle context as defined in [scopes].

13.1.3.1. Built-in scope types in Jakarta EE

When running in Jakarta EE, the implementations of the @RequestScoped, @ApplicationScoped and
@SessionScoped annotations provided by the container, represent the standard scopes defined by the
Java Servlets specification.

13.1.4. Default bean discovery mode for Jakarta EE

When running in Jakarta EE, If the bean discovery mode is annotated, the container must extend the
rules defined in [default_bean_discovery] with:

• bean classes of EJB sessions beans, are discovered, and

• producer methods that are on an EJB session bean are discovered, and

• producer fields that are on an EJB session bean are discovered, and

• disposer methods that are on an EJB session bean are discovered, and

• observer methods that are on an EJB session bean are discovered.

13.1.5. Bean names in Jakarta EE

A bean with a name may be referred to by its name in Unified EL expressions.

There is no relationship between the bean name of an EJB session bean and the EJB name of the
bean.

Bean names allow the direct use of beans in JSP or JSF pages. For example, a bean with the name
products could be used like this:

<h:outputText value="#{products.total}"/>

13.1.5.1. Default bean names for EJB session beans

In the circumstances listed in [default_name], the rule for determining default name for an EJB
session bean are defined in Default bean name for a session bean.

193

13.2. Addition to programming model for Jakarta EE
When running in Jakarta EE, the container must extend the rules defined in [implementation], and
must also provide built-in support for injection and contextual lifecycle management of the
following kinds of bean:

• Session beans

• Resources (Jakarta EE resources, persistence contexts, persistence units, remote EJBs and web
services)

Jakarta EE and embeddable EJB containers are required by the Jakarta EE and EJB specifications to
support EJB session beans and the Jakarta EE component environment. Other containers are not
required to provide support for injection or lifecycle management of session beans or resources.

13.2.1. Managed beans in Jakarta EE

13.2.1.1. Which Java classes are managed beans in Jakarta EE?

When running in Jakarta EE, a top-level Java class is a managed bean if it meets requirements
described in [what_classes_are_beans] or if it is defined to be a managed bean by any other Jakarta
EE specification and if

• It is not annotated with an EJB component-defining annotation or declared as an EJB bean class
in ejb-jar.xml.

13.2.2. EJB Session beans

A session bean is a bean that is implemented by a session bean with an EJB 3.x client view that is
not annotated with @Vetoed or in a package annotated @Vetoed. The basic lifecycle and semantics of
EJB session beans are defined by the EJB specification.

A stateless session bean must belong to the @Dependent pseudo-scope. A singleton session bean must
belong to either the @ApplicationScoped scope or to the @Dependent pseudo-scope. If a session bean
specifies an illegal scope, the container automatically detects the problem and treats it as a
definition error. A stateful session bean may have any scope.

When a contextual instance of a session bean is obtained via the dependency injection service, the
behavior of SessionContext.getInvokedBusinessInterface() is specific to the container
implementation. Portable applications should not rely upon the value returned by this method.

If the bean class of a session bean is annotated @Interceptor or @Decorator, the container
automatically detects the problem and treats it as a definition error.

If the session bean class is a generic type, it must have scope @Dependent. If a session bean with a
parameterized bean class declares any scope other than @Dependent, the container automatically
detects the problem and treats it as a definition error.

194

13.2.2.1. EJB remove methods of session beans

If a session bean is a stateful session bean:

• If the scope is @Dependent, the application may call any EJB remove method of a contextual
instance of the session bean.

• Otherwise, the application may not directly call any EJB remove method of any contextual
instance of the session bean.

The session bean is not required to have an EJB remove method in order for the container to
destroy it.

If the application directly calls an EJB remove method of a contextual instance of a session bean
that is a stateful session bean and declares any scope other than @Dependent, an
UnsupportedOperationException is thrown.

If the application directly calls an EJB remove method of a contextual instance of a session bean
that is a stateful session bean and has scope @Dependent then no parameters are passed to the
method by the container. Furthermore, the container ignores the instance instead of destroying it
when Contextual.destroy() is called, as defined in Lifecycle of EJB stateful session beans.

13.2.2.2. Bean types of a session bean

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and
their superinterfaces. If the session bean has a no-interface view, the unrestricted set of bean types
contains the bean class and all superclasses. In addition, java.lang.Object is a bean type of every
session bean.

Remote interfaces are not included in the set of bean types.

The resulting set of bean types for a session bean consists only of legal bean types, all other types
are removed from the set of bean types.

13.2.2.3. Declaring a session bean

A session bean does not require any special annotations apart from the component-defining
annotation (or XML declaration) required by the EJB specification. The following EJBs are beans:

@Singleton
class Shop { .. }

@Stateless
class PaymentProcessorImpl implements PaymentProcessor { ... }

A bean class may also specify a scope, bean name, stereotypes and/or qualifiers:

@ConversationScoped @Stateful @Default @Model

195

public class ShoppingCart { ... }

A session bean class may extend another bean class:

@Stateless
@Named("loginAction")
public class LoginActionImpl implements LoginAction { ... }

@Stateless
@Mock
@Named("loginAction")
public class MockLoginActionImpl extends LoginActionImpl { ... }

13.2.2.4. Specializing a session bean

If a bean class of a session bean X is annotated @Specializes, then the bean class of X must directly
extend the bean class of another session bean Y. Then X directly specializes Y, as defined in
[specialization].

If the bean class of X does not directly extend the bean class of another session bean, the container
automatically detects the problem and treats it as a definition error.

For example, MockLoginActionBean directly specializes LoginActionBean:

@Stateless
public class LoginActionBean implements LoginAction { ... }

@Stateless @Mock @Specializes
public class MockLoginActionBean extends LoginActionBean implements LoginAction { ...
}

13.2.2.5. Default bean name for a session bean

The default name for a session bean is the unqualified class name of the session bean class, after
converting the first character to lower case.

For example, if the bean class is named ProductList, the default bean name is productList.

13.2.3. Producer methods on EJB session bean

A producer method defined in an EJB session bean follows the rules defined in [producer_method]
with the following addition:

• A producer method defined in an EJB session bean must be either a business method exposed
by a local business interface of the EJB or a static method of the bean class.

196

13.2.3.1. Declaring a producer method in an EJB session bean

A producer method declaration in an EJB session bean follows the rules defined in
[declaring_producer_method] with the following addition:

• if a non-static method of a session bean class is annotated @Produces, and the method is not a
business method exposed by a local business interface of the session bean, the container
automatically detects the problem and treats it as a definition error.

13.2.4. Producer field on EJB session bean

A producer field defined in an EJB session bean follows the rules defined in [producer_field] with
the following addition:

• A producer field defined in an EJB session bean must be a static field of the bean class.

13.2.4.1. Declaring a producer field in an EJB session bean

A producer field declaration in an EJB session bean follows the rules defined in
[declaring_producer_field] with the following addition:

• If a non-static field of an EJB session bean class is annotated @Produces, the container
automatically detects the problem and treats it as a definition error.

13.2.5. Disposer methods on EJB session bean

A disposer method defined in an EJB session bean follows the rules defined in [disposer_method]
with the following addition:

• A disposer method defined in an EJB session bean must be either a business method exposed by
a local business interface of the EJB or a static method of the bean class.

13.2.5.1. Declaring a disposer method on an EJB session bean

A disposer method declaration in an EJB session bean follows the rules defined in
[declaring_disposer_method] with the following addition:

• If a non-static method of an EJB session bean class has a parameter annotated @Disposes, and
the method is not a business method exposed by a local business interface of the session bean,
the container automatically detects the problem and treats it as a definition error.

13.2.6. Jakarta EE components

Most Jakarta EE components support injection and interception, as defined in the Jakarta EE
Platform, Specification, table EE.5-1, but are not considered beans (as defined by this specification).
EJBs, as defined in EJB Session beans are the exception.

The instance used by the container to service an invocation of a Jakarta EE component will not be
the same instance obtained when using @Inject, instantiated by the container to invoke a producer
method, observer method or disposer method, or instantiated by the container to access the value

197

of a producer field. It is recommended that Jakarta EE components should not define observer
methods, producer methods, producer fields or disposer methods. It is safe to annotate Jakarta EE
components with @Vetoed to prevent them being considered beans.

13.2.7. Resources

A resource is a bean that represents a reference to a resource, persistence context, persistence unit,
remote EJB or web service in the Jakarta EE component environment.

By declaring a resource, we enable an object from the Jakarta EE component environment to be
injected by specifying only its type and qualifiers at the injection point. For example, if
@CustomerDatabase is a qualifier:

@Inject @CustomerDatabase Datasource customerData;

@Inject @CustomerDatabase EntityManager customerDatabaseEntityManager;

@Inject @CustomerDatabase EntityManagerFactory customerDatabaseEntityManagerFactory;

@Inject PaymentService remotePaymentService;

The container is not required to support resources with scope other than @Dependent. Portable
applications should not define resources with any scope other than @Dependent.

A resource may not have a bean name.

13.2.7.1. Declaring a resource

A resource may be declared by specifying a Jakarta EE component environment injection
annotation as part of a producer field declaration. The producer field may be static.

• For a Jakarta EE resource, @Resource must be specified.

• For a persistence context, @PersistenceContext must be specified.

• For a persistence unit, @PersistenceUnit must be specified.

• For a remote EJB, @EJB must be specified.

• For a web service, @WebServiceRef must be specified.

The injection annotation specifies the metadata needed to obtain the resource, entity manager,
entity manager factory, remote EJB instance or web service reference from the component
environment.

@Produces @WebServiceRef(lookup="java:app/service/PaymentService")

198

PaymentService paymentService;

@Produces @EJB(ejbLink="../their.jar#PaymentService")
PaymentService paymentService;

@Produces @Resource(lookup="java:global/env/jdbc/CustomerDatasource")
@CustomerDatabase Datasource customerDatabase;

@Produces @PersistenceContext(unitName="CustomerDatabase")
@CustomerDatabase EntityManager customerDatabasePersistenceContext;

@Produces @PersistenceUnit(unitName="CustomerDatabase")
@CustomerDatabase EntityManagerFactory customerDatabasePersistenceUnit;

The bean type and qualifiers of the resource are determined by the producer field declaration.

If the producer field declaration specifies a bean name, the container automatically detects the
problem and treats it as a definition error.

If the matching object in the Jakarta EE component environment is not of the same type as the
producer field declaration, the container automatically detects the problem and treats it as a
definition error.

13.2.7.2. Bean types of a resource

The unrestricted set of bean types for a resource is determined by the declared type of the producer
field, as specified by [producer_field_types].

The resulting set of bean types for a resource consists only of legal bean types, all other types are
removed from the set of bean types.

13.2.8. Additional built-in beans

A Jakarta EE or embeddable EJB container must provide the following built-in beans, all of which
have qualifier @Default:

• a bean with bean type jakarta.transaction.UserTransaction, allowing injection of a reference to
the JTA UserTransaction, and

A servlet container must provide the following built-in beans, all of which have qualifier @Default:

• a bean with bean type jakarta.servlet.http.HttpServletRequest, allowing injection of a
reference to the HttpServletRequest

• a bean with bean type jakarta.servlet.http.HttpSession, allowing injection of a reference to the
HttpSession,

199

• a bean with bean type jakarta.servlet.ServletContext, allowing injection of a reference to the
ServletContext,

These beans are passivation capable dependencies, as defined in
[passivation_capable_dependency].

If a Jakarta EE component class has an injection point of type UserTransaction and qualifier
@Default, and may not validly make use of the JTA UserTransaction according to the Jakarta EE
platform specification, the container automatically detects the problem and treats it as a definition
error.

13.2.9. Injected fields in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean classes in
[injected_fields] to Jakarta EE component classes supporting injection.

13.2.10. Initializer methods in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean classes in
[initializer_methods] to Jakarta EE component classes supporting injection. The container must also
ensure that:

• An initializer method defined in an EJB session bean is not required to be a business method of
the session bean.

13.2.11. Inheritance of type-level metadata in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[type_level_inheritance] to EJB session beans.

13.2.12. Inheritance of member-level metadata in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[member_level_inheritance] to EJB session beans.

13.2.13. Specialization in Jakarta EE

13.2.13.1. Direct and indirect specialization in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[member_level_inheritance] and is also required to support specialization for EJB session beans as
defined in Specializing a session bean.

13.3. Dependency injection, lookup and EL in Jakarta
EE
When running in Jakarta EE, the container must extend the rules defined in
[injection_and_resolution] and may also provide references to contextual instances by Unified EL

200

expression evaluation.

When resolving a name in an EL expression, the container considers the bean name and selected
alternatives.

13.3.1. Modularity in Jakarta EE

In the Jakarta EE module architecture, any Jakarta EE module or library is a module. The Jakarta EE
module is a bean archive if it contains a beans.xml file, as defined in [bean_archive_full].

When running in Jakarta EE, the container must follow the same accessibility rules for beans and
alternatives defined in [selection] for JSP/JSF pages using EL resolution and make sure that only
beans available from injection in the module that defines the JSP/JSF pages are resolved.

In the Jakarta EE module architecture, a bean class is accessible in a module if and only if it is
required to be accessible according to the class loading requirements defined by the Jakarta EE
platform specification.

Note that, in some Jakarta EE implementations, a bean class might be accessible to some other class
even when this is not required by the Jakarta EE platform specification. For the purposes of this
specification, a class is not considered accessible to another class unless accessibility is explicitly
required by the Jakarta EE platform specification.

An alternative is not available for injection, lookup or EL resolution to classes or JSP/JSF pages in a
module unless the module is a bean archive and the alternative is explicitly selected for the bean
archive or the application.

13.3.1.1. Declaring selected alternatives for an application in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[declaring_selected_alternatives_application] to EJB session beans.

13.3.1.2. Declaring selected alternatives for a bean archive in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[declaring_selected_alternatives_bean_archive] to EJB session beans.

13.3.1.3. Unsatisfied and ambiguous dependencies in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[unsatisfied_and_ambig_dependencies] and must also validate all injection points of all Jakarta EE
component classes supporting injection

13.3.2. EL name resolution

When running in Jakarta EE, the container must extend the rules defined in [name_resolution] and
must also support name resolution for name used in Expression Language

An EL name resolves to a bean if:

• the name can be resolved to a bean according to rules in [name_resolution], and

201

• the bean is available for injection in the war containing the JSP or JSF page with the EL
expression.

13.3.2.1. Ambiguous EL names

When running in Jakarta EE, the container must extend the rules defined in [ambig_names] to
names used in Expression Language.

13.3.3. Dependency injection in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [injection] and is also
required to perform dependency injection whenever it creates the following contextual objects:

• contextual instances of EJB session beans.

The container is also required to perform dependency injection whenever it instantiates any of the
following non-contextual objects:

• non-contextual instances of EJB session beans (for example, session beans obtained by the
application from JNDI or injected using @EJB), and

• instances of any other Jakarta EE component class supporting injection.

A Java EE 5 container is not required to support injection for non-contextual objects.

13.3.3.1. Injection using the bean constructor in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[instantiation] to EJB session beans.

13.3.3.2. Injection of fields and initializer methods in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[fields_initializer_methods] to EJB session beans and to any other Jakarta EE component class
supporting injection.

The container is also required to ensure that:

• Initializer methods declared by a class X in the type hierarchy of the bean are called after all
Jakarta EE component environment resource dependencies declared by X or by superclasses of
X have been injected.

• Any @PostConstruct callback declared by a class X in the type hierarchy of the bean is called
after all Jakarta EE component environment resource dependencies declared by X or by
superclasses of X have been injected.

• Any servlet init() method is called after all initializer methods have been called, all injected
fields have been initialized and all Jakarta EE component environment resource dependencies
have been injected.

202

13.3.3.3. Destruction of dependent objects in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[dependent_objects_destruction] to any other Jakarta EE component class supporting injection and
perform destruction after the servlet destroy() method is called.

13.3.3.4. Bean metadata in Jakarta EE

Interceptor and decorator instances associated with Jakarta EE components that are not considered
beans (as defined by this specification) cannot obtain information about the beans they intercept
and decorate (as defined in [bean_metadata]) and thus null is injected into relevant injection
points.

13.4. Scopes and contexts in Jakarta EE

13.4.1. Dependent pseudo-scope in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [dependent_context]
and must also ensure that if a bean is declared to have @Dependent scope:

• When a Unified EL expression in a JSF or JSP page that refers to the bean by its bean name is
evaluated, at most one instance of the bean is instantiated. This instance exists to service just a
single evaluation of the EL expression. It is reused if the bean name appears multiple times in
the EL expression, but is never reused when the EL expression is evaluated again, or when
another EL expression is evaluated.

13.4.1.1. Dependent objects in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean in
[dependent_objects] to Jakarta EE component class instance.

13.4.1.2. Destruction of objects with scope @Dependent in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for bean in
[dependent_destruction] to Jakarta EE component class instance, and must also ensure that :

• all @Dependent scoped contextual instances created during evaluation of a Unified EL expression
in a JSP or JSF page are destroyed when the evaluation completes.

13.4.1.3. Dependent pseudo-scope and Unified EL

Suppose a Unified EL expression in a JSF or JSP page refers to a bean with scope @Dependent by its
bean name. Each time the EL expression is evaluated:

• the bean is instantiated at most once, and

• the resulting instance is reused for every appearance of the bean name, and

• the resulting instance is destroyed when the evaluation completes.

Portable extensions that integrate with the container via Unified EL should also ensure that these

203

rules are enforced.

13.4.2. Passivation and passivating scopes in Jakarta EE

13.4.2.1. Passivation capable beans in Jakarta EE

• As defined by the EJB specification, an EJB stateful session beans is passivation capable if:

◦ interceptors and decorators of the bean are passivation capable, and,

◦ the EJB stateful session bean does not have the passivationCapable flag set to false.

• As defined by the EJB specification, an EJB stateless session bean or an EJB singleton session
bean is not passivation capable.

13.4.2.2. Passivation capable dependencies in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[passivation_capable_dependency], and must also guarantee that:

• all EJB stateless session beans are passivation capable dependencies,

• all EJB singleton session beans are passivation capable dependencies,

• all passivation capable EJB stateful session beans are passivation capable dependencies, and

• all Jakarta EE resources are passivation capable dependencies.

13.4.2.3. Validation of passivation capable beans and dependencies in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for managed beans in
[passivation_validation] to EJB session beans.

13.4.3. Context management for built-in scopes in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [builtin_contexts] and
is also required to ensure the following rules for built-in context implementation.

The built-in request and application context objects are active during servlet, web service and EJB
invocations, and the built in session and request context objects are active during servlet and web
service invocations.

13.4.3.1. Request context lifecycle in Jakarta EE

When running in Jakarta EE the container must extend the rules defined in [request_context] and is
also required to implement request context with the following rules.

The request context is active:

• during the service() method of any servlet in the web application, during the doFilter()
method of any servlet filter and when the container calls any ServletRequestListener or
AsyncListener,

• during any Jakarta EE web service invocation,

204

• during any remote method invocation of any EJB, during any asynchronous method invocation
of any EJB, during any call to an EJB timeout method and during message delivery to any EJB
message-driven bean.

The request context is destroyed:

• at the end of the servlet request, after the service() method, all doFilter() methods, and all
requestDestroyed() and onComplete() notifications return,

• after the web service invocation completes,

• after the EJB remote method invocation, asynchronous method invocation, timeout or message
delivery completes if it did not already exist when the invocation occurred.

The payload of the event fired when the request context is initialized or destroyed is:

• the ServletRequest if the context is initialized or destroyed due to a servlet request, or

• the ServletRequest if the context is initialized or destroyed due to a web service invocation, or

• any java.lang.Object for other types of request.

13.4.3.2. Session context lifecycle in Jakarta EE

When running in Jakarta EE the container is required to implement session context with the
following rules.

The session scope is active:

• during the service() method of any servlet in the web application, during the doFilter()
method of any servlet filter and when the container calls any HttpSessionListener, AsyncListener
or ServletRequestListener.

The session context is shared between all servlet requests that occur in the same HTTP session. The
session context is destroyed when the HTTPSession times out, after all HttpSessionListener s have
been called, and at the very end of any request in which invalidate() was called, after all filters and
ServletRequestListener s have been called.

An event with qualifier @Initialized(SessionScoped.class) is synchronously fired when the session
context is initialized. An event with qualifier @BeforeDestroyed(SessionScoped.class) is
synchronously fired when the session context is about to be destroyed, i.e. before the actual
destruction. An event with qualifier @Destroyed(SessionScoped.class) is synchronously fired when
the session context is destroyed, i.e. after the actual destruction. The event payload is
jakarta.servlet.http.HttpSession.

13.4.3.3. Application context lifecycle in Jakarta EE

When running in Jakarta EE the container must extend the rules defined in [application_context]
and is also required to implement application context with the following rules.

The application scope is active:

• during the service() method of any servlet in the web application, during the doFilter()

205

method of any servlet filter and when the container calls any ServletContextListener,
HttpSessionListener, AsyncListener or ServletRequestListener,

• during any Jakarta EE web service invocation,

• during any asynchronous invocation of an event observer,

• during any remote method invocation of any EJB, during any asynchronous method invocation
of any EJB, during any call to an EJB timeout method and during message delivery to any EJB
message-driven bean,

• when the disposer method or @PreDestroy callback of any bean with any normal scope other
than @ApplicationScoped is called, and

• during @PostConstruct callback of any bean.

The application context is shared between all servlet requests, web service invocations,
asynchronous invocation of an event observer, EJB remote method invocations, EJB asynchronous
method invocations, EJB timeouts and message deliveries to message-driven beans that execute
within the same application. The application context is destroyed when the application is shut
down.

The payload of the event fired when the application context is initialized or destroyed is:

• the ServletContext if the application is a web application deployed to a Servlet container, or

• any java.lang.Object for other types of application.

13.4.3.4. Conversation context lifecycle in Jakarta EE

When running in Jakarta EE the container is required to implement conversation context with the
following rules.

The conversation scope is active during all Servlet requests.

An event with qualifier @Initialized(ConversationScoped.class) is synchronously fired when the
conversation context is initialized. An event with qualifier
@BeforeDestroyed(ConversationScoped.class) is synchronously fired when the conversation is about
to be destroyed, i.e. before the actual destruction. An event with qualifier
@Destroyed(ConversationScoped.class) is synchronously fired when the conversation is destroyed,
i.e. after the actual destruction. The event payload is:

• the conversation id if the conversation context is destroyed and is not associated with a current
Servlet request, or

• the ServletRequest if the application is a web application deployed to a Servlet container, or

• any java.lang.Object for other types of application.

The conversation context provides access to state associated with a particular conversation. Every
Servlet request has an associated conversation. This association is managed automatically by the
container according to the following rules:

• Any Servlet request has exactly one associated conversation.

206

• The container provides a filter with the name "CDI Conversation Filter", which may be mapped
in web.xml, allowing the user alter when the conversation is associated with the servlet request.
If this filter is not mapped in any web.xml in the application, the conversation associated with a
Servlet request is determined at the beginning of the request before calling any service()
method of any servlet in the web application, calling the doFilter() method of any servlet filter
in the web application and before the container calls any ServletRequestListener or
AsyncListener in the web application.

• The implementation should determine the conversation associated with the Servlet request in a
way that does not prevent other filters or servlet from setting the request character encoding or
parsing the request body themselves.

Any conversation is in one of two states: transient or long-running.

• By default, a conversation is transient

• A transient conversation may be marked long-running by calling Conversation.begin()

• A long-running conversation may be marked transient by calling Conversation.end()

All long-running conversations have a string-valued unique identifier, which may be set by the
application when the conversation is marked long-running, or generated by the container.

If the conversation associated with the current Servlet request is in the transient state at the end of
a Servlet request, it is destroyed, and the conversation context is also destroyed.

If the conversation associated with the current Servlet request is in the long-running state at the
end of a Servlet request, it is not destroyed. The long-running conversation associated with a
request may be propagated to any Servlet request via use of a request parameter named cid
containing the unique identifier of the conversation. In this case, the application must manage this
request parameter.

If the current Servlet request is a JSF request, and the conversation is in long-running state, it is
propagated according to the following rules:

• The long-running conversation context associated with a request that renders a JSF view is
automatically propagated to any faces request (JSF form submission) that originates from that
rendered page.

• The long-running conversation context associated with a request that results in a JSF redirect (a
redirect resulting from a navigation rule or JSF NavigationHandler) is automatically propagated
to the resulting non-faces request, and to any other subsequent request to the same URL. This is
accomplished via use of a request parameter named cid containing the unique identifier of the
conversation.

When no conversation is propagated to a Servlet request, or if a request parameter named
conversationPropagation has the value none the request is associated with a new transient
conversation.

All long-running conversations are scoped to a particular HTTP servlet session and may not cross
session boundaries.

207

In the following cases, a propagated long-running conversation cannot be restored and
reassociated with the request:

• When the HTTP servlet session is invalidated, all long-running conversation contexts created
during the current session are destroyed, after the servlet service() method completes.

• The container is permitted to arbitrarily destroy any long-running conversation that is
associated with no current Servlet request, in order to conserve resources.

The conversation timeout, which may be specified by calling Conversation.setTimeout() is a hint to
the container that a conversation should not be destroyed if it has been active within the last given
interval in milliseconds.

If the propagated conversation cannot be restored, the container must associate the request with a
new transient conversation and throw an exception of type
jakarta.enterprise.context.NonexistentConversationException.

The container ensures that a long-running conversation may be associated with at most one
request at a time, by blocking or rejecting concurrent requests. If the container rejects a request, it
must associate the request with a new transient conversation and throw an exception of type
jakarta.enterprise.context.BusyConversationException.

13.5. Lifecycle of contextual instances

13.5.1. Container invocations and interception in Jakarta EE

When the application invokes:

• a business method of a session bean via an EJB remote or local reference,

the invocation is treated as a business method invocation.

When running in Jakarta EE, the container must extend the rules defined in [biz_method], with:

• Invocation of EJB timer service timeouts by the container are not business method invocations,
but are intercepted by interceptors for EJB timeouts.

• Only an invocation of business method on an EJB session bean is subject to EJB services such as
declarative transaction management, concurrency, security and asynchronicity, as defined by
the EJB specification.

• Additionally, invocations of message listener methods of message-driven beans during message
delivery are passed through method interceptors.

13.5.1.1. Lifecycle of EJB stateful session beans

When the create() method of a Bean object that represents an EJB stateful session bean that is
called, the container creates and returns a container-specific internal local reference to a new EJB
session bean instance. The reference must be passivation capable. This reference is not directly
exposed to the application. When the create() method of a Bean object that represents an EJB
stateful session bean that is called, the container creates and returns a container-specific internal

208

local reference to a new EJB session bean instance. The reference must be passivation capable. This
reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying EJB stateful session bean instance. This object must
be passivation capable.

When the destroy() method is called, and if the underlying EJB was not already removed by direct
invocation of a remove method by the application, the container removes the EJB stateful session
bean. The @PreDestroy callback must be invoked by the container.

Note that the container performs additional work when the underlying EJB is created and removed,
as defined in [injection]

13.5.1.2. Lifecycle of EJB stateless and singleton session beans

When the create() method of a Bean object that represents an EJB stateless session or singleton
session bean is called, the container creates and returns a container-specific internal local
reference to the EJB session bean. This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying EJB session bean. This object must be passivation
capable.

When the destroy() method is called, the container simply discards this internal reference.

Note that the container performs additional work when the underlying EJB is created and removed,
as defined in [injection]

13.5.1.3. Lifecycle of resources

When the create() method of a Bean object that represents a resource is called, the container
creates and returns a container-specific internal reference to the Jakarta EE component
environment resource, entity manager, entity manager factory, remote EJB instance or web service
reference. This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying resource, entity manager, entity manager factory,
remote EJB instance or web service reference. This object must be passivation capable.

The container must perform ordinary Jakarta EE component environment injection upon any non-
static field that functions as a resource declaration, as defined by the Jakarta EE Platform and
Jakarta Annotations specifications. The container is not required to perform Jakarta EE component
environment injection upon a static field. Portable applications should not rely upon the value of a
static field that functions as a resource declaration.

References to EJBs and web services are always dependent scoped and a new instance must be

209

obtained for every injection performed.

For an entity manager associated with a resource definition, it must behave as though it were
injected directly using @PersistenceContext.

When the destroy() method of a bean which represents a remote stateful EJB reference is called,
the container will not automatically destroy the EJB reference. The application must explicitly call
the method annotated @Remove. This behavior differs to that specified in Lifecycle of EJB stateful
session beans for beans which represent a local stateful EJB reference

13.6. Decorators in Jakarta EE
When running in Jakarta EE, the container must extend the rules defined for managed beans in
[decorators] to EJB session beans.

13.6.1. Decorator beans in Jakarta EE

Decorators of an EJB session bean must comply with the bean provider programming restrictions
defined by the EJB specification. Decorators of an EJB stateful session bean must comply with the
rules for instance passivation and conversational state defined by the EJB specification.

13.7. Interceptor bindings in Jakarta EE
EJB session and message-driven beans support interception as defined in [interceptors].

13.7.1. Interceptor enablement and ordering in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [enabled_interceptors]
and also ensured that:

• Interceptors declared using interceptor bindings are called after interceptors declared using the
@Interceptor annotation (or using the corresponding element of a deployment descriptor).

• Interceptors declared using interceptor bindings are called before any around-invoke, around-
timeout, or lifecycle event callback methods declared on the target class or any superclass of the
target class.

13.7.2. Interceptor resolution in Jakarta EE

For a custom implementation of the Interceptor interface defined in [interceptor], the container
also calls intercepts() to determine if the interceptor intercepts an EJB timeout method invocation.

13.8. Events in Jakarta EE

13.8.1. Observer methods in EJB session beans

An observer method may also be a non-abstract method of an EJB session bean class. It must be
either a business method exposed by a local business interface of the EJB or a static method of the

210

bean class.

13.8.1.1. Declaring an observer method in an EJB

If a non-static method of a session bean class has a parameter annotated @Observes or
@ObservesAsync, and the method is not a business method exposed by a local business interface of
the EJB, the container automatically detects the problem and treats it as a definition error.

13.8.1.2. Observer method invocation context in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[observer_method_invocation_context] and must also ensure that all kinds of observers are called
in the same client security context as the invocation of Event.fire() or Event.fireAsync().

The transaction and security contexts for a business method exposed by a local business interface
of an EJB session bean also depend upon the transaction attribute and @RunAs descriptor, if any.

13.9. Portable extensions in Jakarta EE

13.9.1. The Bean interface in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [bean] for managed
bean to EJB session bean.

13.9.1.1. The Interceptor interface in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in [interceptor] and must
also ensure that

PRE_PASSIVATE, POST_ACTIVATE and AROUND_TIMEOUT InterceptorType values are linked to EJB lifecycle
callback or timeout method.

13.9.2. InjectionTarget interface in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined for InjectionTarget in
[injectiontarget] and must also ensure that:

• when inject() is called, the container performs Jakarta EE component environment injection,
according to the semantics required by the Jakarta EE platform specification, sets the value of
all injected fields, and calls all initializer methods, as defined in Injection of fields and initializer
methods in Jakarta EE.

• @PostConstruct callback is called according to the semantics required by the Jakarta EE platform
specification.

• @PreDestroy callback is called according to the semantics required by the Jakarta EE platform
specification.

211

13.9.3. The BeanManager object in Jakarta EE

13.9.3.1. Obtaining a reference to the CDI container in Jakarta EE

A Jakarta EE container is required to provide a CDI provider that will allow access to the current
container for any Jakarta EE application or Jakarta EE module which contains enabled beans.

Jakarta EE Components may obtain an instance of BeanManager from JNDI by looking up the name
java:comp/BeanManager.

13.9.4. Alternative metadata sources and EJB

When running in Jakarta EE, the container must extend the rules defined in
[alternative_metadata_sources] and ensure that:

• when an AnnotatedType represents an EJB session bean class, Annotated.getTypeClosure() must
returns the EJB session bean types as defined in Bean types of a session bean.

13.9.5. Addition to Container lifecycle events in Jakarta EE

13.9.5.1. ProcessAnnotatedType event in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[process_annotated_type] to Jakarta EE component and EJB session bean classes.

13.9.5.2. ProcessInjectionPoint event and EJB

When running in Jakarta EE, the container must also fire an event for every injection point of every
Jakarta EE component class supporting injection that may be instantiated by the container at
runtime, including every EJB session or message-driven bean.

13.9.5.3. ProcessInjectionTarget event and EJB

When running in Jakarta EE, the container must also fire an event for every Jakarta EE component
class supporting injection that may be instantiated by the container at runtime, including every EJB
session or message-driven bean.

The container must extend the rules defined in [process_injection_target] for managed bean to EJB
session bean and other Jakarta EE component class supporting injection.

For example, this observer decorates the InjectionTarget for all servlets.

<T extends Servlet> void decorateServlet(@Observes ProcessInjectionTarget<T> pit) {
 pit.setInjectionTarget(decorate(pit.getInjectionTarget()));
}

13.9.5.4. ProcessBeanAttributes event and EJB

When running in Jakarta EE, the container must extend the rules defined in

212

[process_bean_attributes] to EJB session bean.

13.9.5.5. ProcessBean event and EJB

In addition to definition given in [process_bean] the following apply:

• For a session bean with bean class X, the container must raise an event of type
ProcessSessionBean<X>.

Resources are considered to be producer fields.

When running in Jakarta EE, the interface jakarta.enterprise.inject.spi.ProcessBean is also a
supertype of jakarta.enterprise.inject.spi.ProcessSessionBean :

public interface ProcessSessionBean<X>
 extends ProcessManagedBean<Object> {
 public String getEjbName();
 public SessionBeanType getSessionBeanType();
}

• getEjbName() returns the EJB name of the session bean.

• getSessionBeanType() returns a jakarta.enterprise.inject.spi.SessionBeanType representing the
kind of session bean.

public enum SessionBeanType { STATELESS, STATEFUL, SINGLETON }

13.10. Packaging and deployment in Jakarta EE

13.10.1. Bean archive with EJB Session Beans

When running in Jakarta EE, the container must extend the rules defined in [bean_archive_full]
with:

• An implicit bean archive may also contain EJB session beans, and

• EJB session bean should be considered as bean class with bean defining annotation when
determining if an archive is an implicit bean archive.

When determining which archives are bean archives, the container must also consider:

• EJB jars or application client jars

• The WEB-INF/classes directory of a war

The container is not required to support application client jar bean archives.

A Jakarta EE container is required by the Jakarta EE specification to support Jakarta EE modules.

In a war, the beans.xml file must be named:

213

• WEB-INF/beans.xml or WEB-INF/classes/META-INF/beans.xml.

If a war has a file named beans.xml in both the WEB-INF directory and in the WEB-INF/classes/META-
INF directory, then non-portable behavior results. Portable applications must have a beans.xml file
in only one of the WEB-INF or the WEB-INF/classes/META-INF directories.

The following additional rules apply regarding container search for beans:

• In an application deployed as an ear, the container searches every bean archive bundled with
or referenced by the ear, including bean archives bundled with or referenced by wars, EJB jars
and rars contained in the ear. The bean archives might be library jars, EJB jars or war WEB-
INF/classes directories.

• In an application deployed as a war, the container searches every bean archive bundled with or
referenced by the war. The bean archives might be library jars or the WEB-INF/classes directory.

• In an application deployed as an EJB jar, the container searches the EJB jar, if it is a bean
archive, and every bean archive referenced by the EJB jar.

• In an application deployed as a rar, the container searches every bean archive bundled with or
referenced by the rar.

• An embeddable EJB container searches each bean archive in the JVM classpath that is listed in
the value of the embeddable container initialization property jakarta.ejb.embeddable.modules,
or every bean archive in the JVM classpath if the property is not specified. The bean archives
might be directories, library jars or EJB jars.

13.10.2. Type and Bean discovery for EJB

In Jakarta EE, the container automatically discovers EJB session beans and other Jakarta EE
component class supporting injection, in bean archives like it does for managed bean as defined in
[type_bean_discovery_full].

13.10.2.1. Bean discovery in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[bean_discovery_steps_full] and must also discover each EJB session bean.

13.10.2.2. Trimmed bean archive in Jakarta EE

When running in Jakarta EE, the container must extend the rules defined in
[trimmed_bean_archive] and must ensure that EJB session beans are not removed from the set of
discovered types.

13.11. Integration with Unified EL

13.11.1. Bean name resolution in EL expressions

The container must provide a Unified EL ELResolver to the servlet engine and JSF implementation
that resolves bean names using the rules of name resolution defined in [name_resolution] and
resolving ambiguities according to [ambig_names].

214

• If a name used in an EL expression does not resolve to any bean, the ELResolver must return a
null value.

• Otherwise, if a name used in an EL expression resolves to exactly one bean, the ELResolver must
return a contextual instance of the bean, as defined in [contextual_instance].

13.11.2. Unified EL integration API

Since CDI version 4.1, the Unified EL integration API, which is part of the BeanManager API, is
deprecated. The relevant methods are placed in a new interface
jakarta.enterprise.inject.spi.el.ELAwareBeanManager, which is present in a new supplemental CDI
API artifact: jakarta.enterprise:jakarta.enterprise.cdi-el-api.

13.11.2.1. Obtaining ELAwareBeanManager

The BeanManager implementation in Jakarta EE must also implement ELAwareBeanManager. All rules
that apply to the BeanManager, as specified in [beanmanager] and The BeanManager object in Jakarta
EE, also apply to ELAwareBeanManager.

It follows that the container provides a built-in bean with bean type ELAwareBeanManager, scope
@Dependent and qualifier @Default, which is a passivation capable dependency as defined in
[passivation_capable_dependency]. It also follows that an ELAwareBeanManager may be obtained by
using CDI.current().getBeanManager() and casting.

The EL-related methods of ELAwareBeanManager may be called at any time during the execution of the
application.

13.11.2.2. Obtaining the ELResolver

The method ELAwareBeanManager.getELResolver() returns the jakarta.el.ELResolver specified in
Bean name resolution in EL expressions. This ELResolver is used to satisfy the rules defined in Bean
names in Jakarta EE.

public ELResolver getELResolver();

13.11.2.3. Wrapping a Unified EL ExpressionFactory

The method ELAwareBeanManager.wrapExpressionFactory() returns a wrapper
jakarta.el.ExpressionFactory that delegates MethodExpression and ValueExpression creation to the
given ExpressionFactory. When a Unified EL expression is evaluated using a MethodExpression or
ValueExpression returned by the wrapper ExpressionFactory, the rules defined in Dependent
pseudo-scope and Unified EL are enforced by the container.

public ExpressionFactory wrapExpressionFactory(ExpressionFactory expressionFactory);

215

13.12. CDI Specification References
References from the CDI EE Integration specification to the online CDI core specification are
provided in the following sections.

• 2.1. Concepts

• 2.1.1. Functionality provided by the container to the bean

• 2.1.2.1. Legal bean types

• 2.1.4. Scopes

• 2.1.5. Default bean discovery mode

• 2.1.6.2. Default bean names

• 2.2. Programming model

• 2.2.1.1. Which Java classes are managed beans?

• 2.2.2. Producer methods

• 2.2.2.2. Declaring a producer method

• 2.2.3. Producer fields

• 2.2.3.1. Bean types of a producer field

• 2.2.3.2. Declaring a producer field

• 2.2.4. Disposer methods

• 2.2.4.2. Declaring a disposer method

• 2.2.6. Injected fields

• 2.2.7. Initializer methods

• 2.3.1. Inheritance of type-level metadata

• 2.3.2. Inheritance of member-level metadata

• 2.4. Dependency injection and lookup

• 2.4.1. Modularity

• 2.4.2.2. Unsatisfied and ambiguous dependencies

• 2.4.3. Name resolution

• 2.4.3.1. Ambiguous names

216

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#concepts
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#capabilities
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#legal_bean_types
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#scopes
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#default_bean_discovery
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#default_name
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#implementation
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#what_classes_are_beans
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#producer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#declaring_producer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#producer_field
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#producer_field_types
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#declaring_producer_field
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#disposer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#declaring_disposer_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injected_fields
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#initializer_methods
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#type_level_inheritance
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#member_level_inheritance
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injection_and_resolution
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#selection
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#unsatisfied_and_ambig_dependencies
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#name_resolution
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#ambig_names

• 2.4.5. Dependency injection

• 2.4.5.1. Injection using the bean constructor

• 2.4.5.2. Injection of fields and initializer methods

• 2.4.5.3. Destruction of dependent objects

• 2.4.5.8. Bean metadata

• 2.5. Scopes and contexts

• 2.5.4. Dependent pseudo-scope

• 2.5.4.1. Dependent objects

• 2.5.4.2. Destruction of objects with scope @Dependent

• 2.5.5.3. Contextual instance of a bean

• 2.5.6. Context management for built-in scopes

• 2.5.6.1. Request context lifecycle

• 2.5.6.2. Application context lifecycle

• 2.6.2. Container invocations and interception

• 2.7. Interceptor bindings

• 2.8.5.3. Observer method invocation context

• 3.10.1. Bean archives in CDI Full

• 3.10.4. Type and Bean discovery in CDI Full

• 3.10.4.3. Trimmed bean archive

• 3.10.4.4. Bean discovery in CDI Full

• 3.2.3. Specialization

• 3.4.5.3. Passivation capable dependencies

• 3.4.5.5. Validation of passivation capable beans and dependencies

• 3.6.2. Interceptor enablement and ordering in CDI Full

• 3.7. Decorators

• 3.9.1. The Bean interface

• 3.9.1.2. The Interceptor interface

217

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injection
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#instantiation
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#fields_initializer_methods
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_objects_destruction
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean_metadata
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#contexts
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_objects
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#dependent_destruction
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#contextual_instance
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#builtin_contexts
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#request_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#application_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#biz_method
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#interceptors
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#observer_method_invocation_context
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean_archive_full
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#type_bean_discovery_full
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#trimmed_bean_archive
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean_discovery_steps_full
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#specialization
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#passivation_capable_dependency
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#passivation_validation
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#enabled_interceptors
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#decorators
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#bean
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#interceptor

• 3.9.2. The Producer and InjectionTarget interfaces

• 3.9.3. The BeanManager object

• 3.9.4. Alternative metadata sources

• 3.9.5.10. ProcessBean event

• 3.9.5.6. ProcessAnnotatedType event

• 3.9.5.8. ProcessInjectionTarget event

• 3.9.5.9. ProcessBeanAttributes event

218

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#injectiontarget
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#beanmanager
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#alternative_metadata_sources
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_bean
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_annotated_type
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_injection_target
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#process_bean_attributes

Chapter 14. Future Directions
This version of the Jakarta™ EE Platform specification includes most of the facilities needed by
enterprise applications. Still, there is always more to be done. This chapter briefly describes our
plans for future versions of this specification. Please keep in mind that all of this is subject to
change. Your feedback is encouraged.

The following sections describe additional facilities we would like to include in future versions of
this specification. Many of the APIs included in the Jakarta EE platform will continue to evolve on
their own and we will include the latest version of each API.

14.1. Jakarta EE SPI
Many of the APIs that make up the Jakarta EE platform include an SPI layer that allows service
providers or other system level components to be plugged in. This specification does not describe
the execution environment for all such service providers, nor the packaging and deployment
requirements for all service providers. However, the Jakarta Connectors Specification does define
the requirements for certain types of service providers called resource adapters, and the Jakarta
Authorization specification defines requirements for security service providers. Future versions of
this specification will more fully define the Jakarta EE SPI.

14.2. Java Platform Module System (JPMS)
The EE10 release introduced a requirement for every component specification API jar included a
JPMS module-info.class suitable for use with OpenJDK tools like jlink and jdeps. The contents of
module-info.class files are not standard, portable, may change without notice and there is no
requirement around testing of JPMS in API jar signature tests or TCKs. Vendors are free to create
their own API jars that pass the signature tests, but include no JPMS module-info.class files or JPMS
module-info.class files with different or conflicting contents. It is a future task to determine
whether EE containers should support deployments that make use of JPMS information.

219

Appendix A: Deployment Descriptors
This appendix describes Document Type Definitions (DTDs) and XML schemas for Deployment
Descriptors from current and previous versions of the Java™ EE and Jakarta™ EE specifications. All
Jakarta EE 9 products are required to support the DTDs and schemas specified by Jakarta EE 8, as
well as the schemas specified in the current version of the specification. This ensures that
applications written to the previous version of the Jakarta EE specification can be deployed on
products supporting the current version of this specification. Support for versions of DTDs and
schemas prior to Jakarta EE 8 is optional. In addition, there are no restrictions on mixing versions
of supported deployment descriptors in a single application; any combination of valid deployment
descriptor versions must be supported.

If a newer version of a component specification is included in the Jakarta EE release cycle, any XSD
file used by that specification has its version number and file name updated accordingly to match
the version of the component specification included in the corresponding EE release. This update
happens whether or not there are normative changes to the XSD files.

If a component specification is not modified during an EE release cycle, its XSD files remain a part
of the platform as long as the component specification itself remains part of the platform.

A.1. Jakarta EE 11 schemas
Reference this page, https://jakarta.ee/xml/ns/jakartaee/#11, for the schema definitions defined for
Jakarta EE 11.

A.2. Jakarta EE 10 schemas
Reference this page, https://jakarta.ee/xml/ns/jakartaee/#10, for the schema definitions defined for
Jakarta EE 10.

A.3. Jakarta EE 9 schemas
A new namespace has been specified for Jakarta EE 9, https://jakarta.ee/xml/ns/jakartaee/.
Reference this page, https://jakarta.ee/xml/ns/jakartaee/#9, for the schema definitions defined for
Jakarta EE 9.

A.4. Java EE 8 / Jakarta EE 8 Schemas
No updates to the schemas defined in previous releases of Java EE were required for Java EE 8 or
Jakarta EE 8. Reference this page, https://jakarta.ee/xml/ns/jakartaee/#8, for the schema definitions
defined for Java EE 8 and Jakarta EE 8.

A.5. Java EE 7 Schemas

220

https://jakarta.ee/xml/ns/jakartaee/#11
https://jakarta.ee/xml/ns/jakartaee/#10
https://jakarta.ee/xml/ns/jakartaee/
https://jakarta.ee/xml/ns/jakartaee/#9
https://jakarta.ee/xml/ns/jakartaee/#8

A.5.1. Java EE 7 Application XML Schema

The XML grammar for a Java EE 7 application deployment descriptor is defined by the Java EE 7
application schema. The root element of the deployment descriptor for a Java EE application is
application . The granularity of composition for Java EE application assembly is the Java EE module.
A Java EE application deployment descriptor contains a name and description for the application
and the URI of a UI icon for the application, as well a list of the Java EE modules that comprise the
application. The content of the XML elements is in general case sensitive. This means, for example,
that <role-name>Manager</role-name> is a different role than <role-name>manager</role-name> .

All valid Java EE 7 application deployment descriptors must conform to the XML Schema definition,
or the DTD or schema definition from a previous version of this specification. The deployment
descriptor must be named META-INF/application.xml in the .ear file. Note that this name is case-
sensitive. Java EE 7 Application XML Schema Structure shows a graphic representation of the
structure of the Java EE application 7 XML Schema.

221

application-name?

description*

display-name*

icon*

small-icon?

large-icon?

initialize-in-order?

module+

connector | ejb | java | web

web-uri

context-root

alt-d?

security-role*

description*

role-name

library-directory?

env-entry*

description*

env-entry-name

env-entry-type?

env-entry-value?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

ejb-ref*

description*

ejb-ref-name

ejb-ref-type?

home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

remote?

ejb-link?
ejb-local-ref*

description*

ejb-ref-name

ejb-ref-type?

local-home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

local?

ejb-link?

service-ref* (see schema for details)

resource-ref*

description*

res-ref-name

res-type?

res-auth?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

res-sharing-scope?

resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-ref*

description*

message-destination-ref-name

message-destination-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-usage?

message-destination-link?

persistence-unit-ref*

description*

persistence-unit-ref-name

persistence-unit-name?

mapped-name?

injection-target*

injection-target-class

injection-target-name

persistence-context-ref*

description*

persistence-context-ref-name

persistence-unit-name?

persistence-property

name

value

persistence-context-type?

persistence-context-synchronization?

post-construct*
lifecycle-calback-class?

lifecycle-calback-method

pre-destroy*
lifecycle-calback-class?

lifecycle-calback-method

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

data-source* (see schema for details)

jms-connection-factory* (see schema for details)

jms-destination* (see schema for details)

mail-session* (see schema for details)

connector-resource* (see schema for details)

admistered-object* (see schema for details)

application

Figure 13. Java EE 7 Application XML Schema Structure

222

Java EE 7 Application XML Schema Structure The XML Schema located at http://xmlns.jcp.org/xml/
ns/javaee/application_7.xsd defines the XML grammar for a Java EE 7 application deployment
descriptor.

A.5.2. Common Java EE 7 XML Schema Definitions

The XML Schema located at http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd defines types that are
used by many other Java EE 7 deployment descriptor schemas, both in this specification and in
other specifications.

A.5.3. Java EE 7 Application Client XML Schema

The XML grammar for a Java EE 7 application client deployment descriptor is defined by the Java
EE 7 application-client schema. The root element of the deployment descriptor for an application
client is application-client . The content of the XML elements is in general case sensitive. This means,
for example, that <res-auth>Container</res-auth> must be used, rather than <res-
auth>container</res-auth> .

All valid application-client deployment descriptors must conform to the XML Schema definition, or
to a DTD or schema definition from a previous version of this specification. The deployment
descriptor must be named META-INF/application-client.xml in the application client’s .jar file. Note
that this name is case-sensitive.

Java EE 7 Application Client XML Schema Structure shows the structure of the Java EE 7
application-client XML Schema. The Java EE 7 application-client XML Schema is located at
http://xmlns.jcp.org/xml/ns/javaee/application-client_7.xsd .

223

http://xmlns.jcp.org/xml/ns/javaee/application_7.xsd
http://xmlns.jcp.org/xml/ns/javaee/application_7.xsd
http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd
http://xmlns.jcp.org/xml/ns/javaee/application-client_7.xsd

module-name?

description*

display-name*

icon*

small-icon?

large-icon?

env-entry*

description*

env-entry-name

env-entry-type?

env-entry-value?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

ejb-ref*
description*

ejb-ref-name

ejb-ref-type?

home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

remote?

ejb-link?

service-ref* (see schema for details)

resource-ref*

description*

res-ref-name

res-type?

res-auth?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

res-sharing-scope?

resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-ref*

description*

message-destination-ref-name

message-destination-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-usage?

message-destination-link?

persistence-unit-ref*

description*

persistence-unit-ref-name

persistence-unit-name?

mapped-name?

injection-target*

injection-target-class

injection-target-name

post-construct*
lifecycle-calback-class?

lifecycle-calback-method

pre-destroy*
lifecycle-calback-class?

lifecycle-calback-method

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

data-source* (see schema for details)

jms-connection-factory* (see schema for details)

jms-destination* (see schema for details)

mail-session* (see schema for details)

connector-resource* (see schema for details)

application-client

Figure 14. Java EE 7 Application Client XML Schema Structure

224

A.6. Java EE 6 Schemas

A.6.1. Java EE 6 Application XML Schema

The XML grammar for a Java EE 6 application deployment descriptor is defined by the Java EE 6
application schema. The root element of the deployment descriptor for a Java EE application is
application . The granularity of composition for Java EE application assembly is the Java EE module.
A Java EE application deployment descriptor contains a name and description for the application
and the URI of a UI icon for the application, as well a list of the Java EE modules that comprise the
application. The content of the XML elements is in general case sensitive. This means, for example,
that <role-name>Manager</role-name> is a different role than <role-name>manager</role-name> .

All valid Java EE 6 application deployment descriptors must conform to the XML Schema definition,
or the DTD or schema definition from a previous version of this specification. The deployment
descriptor must be named META-INF/application.xml in the .ear file. Note that this name is case-
sensitive. Java EE 6 Application XML Schema Structure shows a graphic representation of the
structure of the Java EE 6 application XML Schema.

225

application-name?

description*

display-name*

icon*

small-icon?

large-icon?

initialize-in-order?

module+

connector | ejb | java | web

web-uri

context-root

alt-d?

security-role*

description*

role-name

library-directory?

env-entry*

description*

env-entry-name

env-entry-type?

env-entry-value?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

ejb-ref*

description*

ejb-ref-name

ejb-ref-type?

home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

remote?

ejb-link?
ejb-local-ref*

description*

ejb-ref-name

ejb-ref-type?

local-home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

local?

ejb-link?

service-ref* (see schema for details)

resource-ref*

description*

res-ref-name

res-type?

res-auth?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

res-sharing-scope?

resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-ref*

description*

message-destination-ref-name

message-destination-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-usage?

message-destination-link?

persistence-unit-ref*

description*

persistence-unit-ref-name

persistence-unit-name?

mapped-name?

injection-target*

injection-target-class

injection-target-name

persistence-context-ref*

description*

persistence-context-ref-name

persistence-unit-name?

persistence-property

name

value

persistence-context-type?

post-construct*
lifecycle-calback-class?

lifecycle-calback-method

pre-destroy*
lifecycle-calback-class?

lifecycle-calback-method

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

data-source* (see schema for details)

application

Figure 15. Java EE 6 Application XML Schema Structure

226

Java EE 6 Application XML Schema Structure The XML Schema located at http://java.sun.com/xml/
ns/javaee/application_6.xsd defines the XML grammar for a Java EE 6 application deployment
descriptor.

A.6.2. Common Java EE 6 XML Schema Definitions

The XML Schema located at http://java.sun.com/xml/ns/javaee/javaee_6.xsd defines types that are
used by many other Java EE deployment descriptor schemas, both in this specification and in other
specifications.

A.6.3. Java EE 6 Application Client XML Schema

The XML grammar for a Java EE 6 application client deployment descriptor is defined by the Java
EE application-client schema. The root element of the deployment descriptor for an application
client is application-client . The content of the XML elements is in general case sensitive. This means,
for example, that <res-auth>Container</res-auth> must be used, rather than <res-
auth>container</res-auth> .

All valid application-client deployment descriptors must conform to the XML Schema definition, or
to a DTD or schema definition from a previous version of this specification. The deployment
descriptor must be named META-INF/application-client.xml in the application client’s .jar file. Note
that this name is case-sensitive.

Java EE 6 Application Client XML Schema Structure shows the structure of the Java EE 6
application-client XML Schema. The Java EE 6 application-client XML Schema is located at
http://java.sun.com/xml/ns/javaee/application-client_6.xsd .

227

http://java.sun.com/xml/ns/javaee/application_6.xsd
http://java.sun.com/xml/ns/javaee/application_6.xsd
http://java.sun.com/xml/ns/javaee/javaee_6.xsd
http://java.sun.com/xml/ns/javaee/application-client_6.xsd

module-name?

description*

display-name*

icon*

small-icon?

large-icon?

env-entry*

description*

env-entry-name

env-entry-type?

env-entry-value?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

ejb-ref*

description*

ejb-ref-name

ejb-ref-type?

home?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

remote?

ejb-link?

service-ref* (see schema for details)

resource-ref*

description*

res-ref-name

res-type?

res-auth?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

res-sharing-scope?
resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-ref*

description*

message-destination-ref-name

message-destination-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name
lookup-name?

message-destination-usage?

message-destination-link?

persistence-unit-ref*

description*

persistence-unit-ref-name

persistence-unit-name?

mapped-name?

injection-target*

injection-target-class

injection-target-name

post-construct*
lifecycle-calback-class?

lifecycle-calback-method

pre-destroy*
lifecycle-calback-class?

lifecycle-calback-method

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

data-source* (see schema for details)

application-client

Figure 16. Java EE 6 Application Client XML Schema Structure

A.7. Java EE 5 Schemas

A.7.1. Java EE 5 Application XML Schema

The XML grammar for a Java EE 5 application deployment descriptor is defined by the Java EE 5
application schema. The root element of the deployment descriptor for a Java EE application is
application . The granularity of composition for Java EE application assembly is the Java EE module.
A Java EE application deployment descriptor contains a name and description for the application
and the URI of a UI icon for the application, as well a list of the Java EE modules that comprise the
application. The content of the XML elements is in general case sensitive. This means, for example,
that <role-name>Manager</role-name> is a different role than <role-name>manager</role-name> .

A valid Java EE 5 application deployment descriptors must conform to this XML Schema definition.

The deployment descriptor must be named META-INF/application.xml in the .ear file. Note that this
name is case-sensitive.

228

Java EE 5 Application XML Schema Structure shows a graphic representation of the structure of the
Java EE 5 application XML Schema.

description*

display-name*

icon*

small-icon?

large-icon?

module+

connector | ejb | java | web

web-uri

context-root

alt-d?

security-role*

description*

role-name

library-directory?

application

Figure 17. Java EE 5 Application XML Schema Structure

The XML Schema located at http://java.sun.com/xml/ns/javaee/application_5.xsd defines the XML
grammar for a Java EE 5 application deployment descriptor.

A.7.2. Common Java EE 5 XML Schema Definitions

The XML Schema located at http://java.sun.com/xml/ns/javaee/javaee_5.xsd defines types that are
used by many other Java EE 5 deployment descriptor schemas, both in this specification and in
other specifications.

A.7.3. Java EE 5 Application Client XML Schema

The XML grammar for a Java EE 5 application client deployment descriptor is defined by the Java
EE 5 application-client schema. The root element of the deployment descriptor for an application
client is application-client . The content of the XML elements is in general case sensitive. This means,
for example, that <res-auth>Container</res-auth> must be used, rather than <res-
auth>container</res-auth> .

All valid application-client deployment descriptors must conform to the XML Schema definition, or
to a DTD or schema definition from a previous version of this specification. The deployment
descriptor must be named META-INF/application-client.xml in the application client’s .jar file. Note
that this name is case-sensitive.

Java EE 5 Application Client XML Schema Structure shows the structure of the Java EE 5
application-client XML Schema. The Java EE application-client XML Schema is located at
http://java.sun.com/xml/ns/javaee/application-client_5.xsd .

229

http://java.sun.com/xml/ns/javaee/application_5.xsd
http://java.sun.com/xml/ns/javaee/javaee_5.xsd
http://java.sun.com/xml/ns/javaee/application-client_5.xsd

description*

display-name*

icon*

small-icon?

large-icon?

env-entry*

description*

env-entry-name

env-entry-type?

env-entry-value?

mapped-name?

injection-target*

injection-target-class

injection-target-name

ejb-ref*

description*

ejb-ref-name

ejb-ref-type?

home?

mapped-name?

injection-target*

injection-target-class

injection-target-name

remote?

ejb-link?
resource-ref*

description*

res-ref-name

res-type?

res-auth?

mapped-name?

injection-target*

injection-target-class

injection-target-name

res-sharing-scope?
resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name

message-destination-ref*

description*

message-destination-ref-name

message-destination-type?

mapped-name?

injection-target*

injection-target-class

injection-target-name

message-destination-usage?

message-destination-link?

persistence-unit-ref*

description*

persistence-unit-ref-name

persistence-unit-name?

mapped-name?

injection-target*

injection-target-class

injection-target-name

post-construct*
lifecycle-calback-class?

lifecycle-calback-method

pre-destroy*
lifecycle-calback-class?

lifecycle-calback-method

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

application-client

Figure 18. Java EE 5 Application Client XML Schema Structure

A.8. J2EE 1.4 Schemas

A.8.1. J2EE 1.4 Application XML Schema

This section provides the XML Schema for the J2EE 1.4 application deployment descriptor. The XML
grammar for a J2EE 1.4 application deployment descriptor is defined by the J2EE:application
schema. The granularity of composition for J2EE application assembly is the J2EE module. A
J2EE:application deployment descriptor contains a name and description for the application and
the URI of a UI icon for the application, as well a list of the J2EE modules that comprise the
application. The content of the XML elements is in general case sensitive. This means, for example,
that <role-name>Manager</role-name> is a different role than <role-name>manager</role-name> .

A valid J2EE 1.4 application deployment descriptor may conform to the XML Schema definition
below. The deployment descriptor must be named META-INF/application.xml in the .ear file. Note
that this name is case-sensitive.

230

J2EE 1.4 Application XML Schema Structure shows a graphic representation of the structure of the
J2EE application XML Schema.

description*

display-name*

icon*

small-icon?

large-icon?

module+

connector | ejb | java | web

web-uri

context-root

alt-d?

security-role*

description*

role-name

application

Figure 19. J2EE 1.4 Application XML Schema Structure

The XML Schema that defines the XML grammar for a J2EE 1.4 application deployment descriptor is
located at http://java.sun.com/xml/ns/j2ee/application_1_4.xsd .

A.8.2. Common J2EE 1.4 XML Schema Definitions

The XML Schema that defines types that are used by many other J2EE 1.4 deployment descriptor
schemas, both in this specification and in other specifications, is located at http://java.sun.com/xml/
ns/j2ee/j2ee_1_4.xsd .

A.8.3. J2EE 1.4 Application Client XML Schema

The XML grammar for a J2EE 1.4 application client deployment descriptor is defined by the J2EE 1.4
application-client schema. The root element of the deployment descriptor for an application client
is application-client . The content of the XML elements is in general case sensitive. This means, for
example, that <res-auth>Container</res-auth> must be used, rather than <res-auth>container</res-
auth> .

A valid application-client deployment descriptors may conform to the following XML Schema
definition. The deployment descriptor must be named META-INF/application-client.xml in the
application client’s .jar file. Note that this name is case-sensitive.

J2EE 1.4 Application Client XML Schema Structure shows the structure of the J2EE 1.4 application-
client XML Schema, which is available at http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd .

231

http://java.sun.com/xml/ns/j2ee/application_1_4.xsd
http://java.sun.com/xml/ns/j2ee/j2ee_1_4.xsd
http://java.sun.com/xml/ns/j2ee/j2ee_1_4.xsd
http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd

description*

display-name*

icon*

small-icon?

large-icon?

env-entry*

description*

env-entry-name

env-entry-type

env-entry-value?

ejb-ref*

description*

ejb-ref-name

ejb-ref-type

home

remote

ejb-link?

resource-ref*

description*

res-ref-name

res-type

res-auth

res-sharing-scope?

resource-env-ref*

description*

resource-env-ref-name

resource-env-ref-type

message-destination-ref*

description*

message-destination-ref-name

message-destination-type

message-destination-usage

message-destination-link?

callback-handler?

message-destination*

description*

display-name+

message-destination-name

icon*

application-client

Figure 20. J2EE 1.4 Application Client XML Schema Structure

232

A.9. J2EE 1.3 DTDs

A.9.1. J2EE:application 1.3 XML DTD

This section provides the XML DTD for the J2EE 1.3 application deployment descriptor. The XML
grammar for a J2EE 1.3 application deployment descriptor is defined by the J2EE:application
document type definition. The granularity of composition for J2EE application assembly is the J2EE
module. A J2EE:application deployment descriptor contains a name and description for the
application and the URI of a UI icon for the application, as well as a list of the J2EE modules that
comprise the application. The content of the XML elements is in general case sensitive. This means,
for example, that <role-name>Manager</role-name> is a different role than <role-
name>manager</role-name> .

A valid J2EE 1.3 application deployment descriptor may contain the following DOCTYPE
declaration:

 <!DOCTYPE application PUBLIC "-//Sun
Microsystems, Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">

The deployment descriptor must be named META-INF/application.xml in the .ear file.

J2EE:1.3 application XML DTD Structure_ shows a graphic representation of the structure of the
J2EE:application XML DTD.

description* display-name* icon*

small-icon? large-icon?

module+

connector | ejb | java | web

web-uri context-root

alt-d?

security-role*

description* role-name

application

Figure 21. J2EE:1.3 application XML DTD Structure

The DTD that defines the XML grammar for a J2EE 1.3 application deployment descriptor is
available at http://java.sun.com/dtd/application_1_3.dtd.

A.9.2. J2EE:application-client 1.3 XML DTD

This section describes the XML DTD for the J2EE 1.3 version of the application client deployment
descriptor. The XML grammar for a J2EE 1.3 application client deployment descriptor is defined by
the J2EE:application-client document type definition. The root element of the deployment descriptor
for an application client is application-client . The content of the XML elements is in general case

233

http://java.sun.com/dtd/application_1_3.dtd

sensitive. This means, for example, that <res-auth>Container</res-auth> must be used, rather than
<res-auth>container</res-auth> .

A valid application-client deployment descriptor may contain the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application Client
1.3//EN" " http://java.sun.com/dtd/application-client_1_3.dtd ">

The deployment descriptor must be named META-INF/application-client.xml in the application
client’s .jar file.

J2EE:1.3 application-client XML DTD Structure shows the structure of the J2EE:application-client
XML DTD, which is available at http://java.sun.com/dtd/application-client_1_3.dtd.

descriptiondisplay-nameicon

small-icon large-icon

application-client

env-entry*

description env-entry-name env-entry-type env-entry-value?

ejb-ref*

ejb-ref-name ejb-ref-type home remote ejb-linkdescription

resource-ref*

description res-ref-name res-type res-auth res-sharing-scope

resource-env-ref*

description resource-env-ref-name resource-env-ref-type

callback-handler

Figure 22. J2EE:1.3 application-client XML DTD Structure

A.10. J2EE 1.2 DTDs

A.10.1. J2EE:application 1.2 XML DTD

This section provides the XML DTD for the J2EE 1.2 version of the application deployment
descriptor. A valid J2EE 1.2 application deployment descriptor may contain the following DOCTYPE
declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

J2EE:1.2 application XML DTD Structure_ shows a graphic representation of the structure of the
J2EE:application XML DTD.

234

http://java.sun.com/dtd/application-client_1_3.dtd
http://java.sun.com/dtd/application-client_1_3.dtd

description*display-name*icon*

small-icon? large-icon?

module+

ejb | java | web

web-uri context-root

alt-d?

security-role*

description* role-name

application

Figure 23. J2EE.1.2 application XML DTD Structure

The DTD that defines the XML grammar for a J2EE 1.2 application deployment descriptor is
available at http://java.sun.com/j2ee/dtds/application_1_2.dtd.

A.10.2. J2EE:application-client 1.2 XML DTD

This section describes the XML DTD for the J2EE 1.2 version of the application client deployment
descriptor. A valid application client deployment descriptor may contain the following DOCTYPE
declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application Client
1.2//EN" "http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

J2EE:1.2 application-client XML DTD Structure shows the structure of the J2EE:application-client
XML DTD, which is available at http://java.sun.com/j2ee/dtds/application-client_1_2.dtd.

description?display-nameicon?

small-icon? large-icon?

application-client

env-entry*

description? env-entry-name env-entry-type env-entry-value?

ejb-ref*

ejb-ref-name ejb-ref-type home remote ejb-link?description?

resource-ref*

description? res-ref-name res-type res-auth

Figure 24. J2EE:1.2 application-client XML DTD Structure

235

http://java.sun.com/j2ee/dtds/application_1_2.dtd
http://java.sun.com/j2ee/dtds/application-client_1_2.dtd

Appendix B: Java EE 8 and Jakarta EE 8
Comparison

B.1. Java EE 8 and Jakarta EE 8 Specification
Comparisons
The intent of this section is to explain any differences in specification names and versions between
those referenced in the last Java EE 8 Platform specification, dated July 31st, 2017 and the Jakarta
EE 8 Platform specification.

In some cases the versions changed in preparation for contribution and therefore the official JCP
versions changed over those referenced in the July 31st, 2017 Platform specification. In other cases
the versions were changed after the contribution. This section explains both sets of changes and
encompasses all specifications contributed.

It is important to understand that despite any name or version changes, Java EE 8 and Jakarta EE 8
are functionally equivalent.

Table 8. Java EE 8 and Jakarta EE 8 Specification References

Java EE 8 Specification Jakarta EE 8 Specification

Java™ Platform, Enterprise Edition 8 Jakarta™ EE Platform 8

Enterprise JavaBeans™ 3.2 Jakarta™ Enterprise Beans 3.2

Common Annotations for the Java Platform 1.3 Jakarta™ Annotations 1.3

Java™ Servlet 4.0 Jakarta™ Servlet 4.0

Java API for WebSocket 1.1 Jakarta™ WebSocket 1.1

JavaServer Faces 2.3 Jakarta™ Server Faces 2.3

JavaServer Pages™ 2.3 Jakarta™ Server Pages 2.3

Standard Tag Library for JavaServer Pages 1.2 Jakarta™ Standard Tag Library 1.2

Expression Language 3.0 Jakarta™ Expression Language 3.0

Debugging Support for Other Languages 1.0 Jakarta™ Debugging Support for Other
Languages 1.0

Java™ Message Service 2.0 Jakarta™ Messaging 2.0

Java™ Transaction API 1.2 Jakarta™ Transaction 1.3

JavaMail™ API 1.6 Jakarta™ Mail 1.6

Java EE™ Connector Architecture 1.7 Jakarta™ Connectors 1.7

Web Services for Java EE 1.4 Jakarta™ Enterprise Web Services 1.4

Java™ API for XML-based RPC 1.1 Jakarta™ XML RPC 1.1

Java™ API for XML Registries 1.0 Jakarta™ XML Registries 1.0

236

Java EE 8 Specification Jakarta EE 8 Specification

Java™ API for RESTful Web Services 2.1 Jakarta™ RESTful Web Services 2.1

Java API for JSON Processing 1.1 Jakarta™ JSON Processing 1.1

Java API for JSON Binding 1.0 Jakarta™ JSON Binding 1.0

Java™ Platform, Enterprise Edition Management
1.1

Jakarta™ Management 1.1

Java™ Platform, Enterprise Edition Deployment
1.2

Jakarta™ Deployment 1.7

Java™ Authorization Service Provider Contract
for Containers 1.5

Jakarta™ Authorization 1.5

Java™ Authentication Service Provider Interface
for Containers 1.1

Jakarta™ Authentication 1.1

Java™ EE Security API 1.0 Jakarta™ Security 1.0

Java Persistence 2.2 Jakarta™ Persistence 2.2

Bean Validation 2.0 Jakarta™ Bean Validation 2.0

Managed Beans 1.0 Jakarta™ Managed Beans 1.0

Interceptors 1.2 rev A Jakarta™ Interceptors 1.2

Contexts and Dependency Injection for the Java
EE Platform 2.0

Jakarta™ Contexts and Dependency Injection 2.0

Dependency Injection for Java 1.0 Jakarta™ Dependency Injection 1.0

Concurrency Utilities for Java EE 1.0 Jakarta™ Concurrency 1.1

Batch Applications for the Java Platform 1.0 rev
A

Jakarta™ Batch 1.0

B.1.1. Transaction 1.2 vs 1.3

To address cleanly separating the javax.transaction package in Java™ SE from the classes being
contributed, a Maintenance Release of the Java™ Transaction API (JTA) was created in the JCP and
released as version 1.3. The official Jakarta version is therefore 1.3 and not 1.2.

No API changes were made in this Maintenance Release or after contribution and Java™
Transaction API 1.2, Java™ Transaction API 1.3 and Jakarta Transaction 1.3 are functionally
equivalent.

B.1.2. Deployment 1.2 vs 1.7

The last Maintenance Release of JSR-88 Java™ EE Application Deployment in the JCP is version 1.2.
After contribution and before completion of the Jakarta EE Specification Process a version 1.7 was
released under the jakarta groupId in efforts to ship a Java EE 8 certified version of Eclipse
GlassFish.

The mistaken change from 1.2 to 1.7 was discovered while following the completed Jakarta EE

237

https://jcp.org/aboutJava/communityprocess/maintenance/jsr907/JTA1.3MR-November2017.pdf

Specification Process. The Specification Committee decided to leave the version as 1.7 to avoid any
potential future version conflicts.

Java™ EE Application Deployment 1.2 and Jakarta™ Deployment 1.7 are functionally equivalent.

B.1.3. Concurrency 1.0 vs 1.1

The last official release of JSR 236: Concurrency Utilities for JavaTM EE was 1.0. A version 1.1 was
published under the javax groupId in Feb 2018 and again as 1.1 under the jakarta groupId in Jan
2019 for the previously mentioned Java EE 8 certified version of Eclipse GlassFish.

The mistaken change from 1.0 to 1.1 was discovered while following the Jakarta EE Specification
Process and, as with Deployment, the Specification Committee decided to leave the version 1.1 to
avoid future version conflicts.

Concurrency Utilities for Java EE 1.0 and Jakarta Concurrency 1.1 are functionally equivalent.

B.2. Java EE 8 Specification References
The following table lists specifications contributed to Eclipse but not included in Jakarta EE 8. These
specifications are a part of Java SE 8 but are being removed from later versions of Java SE as
described in JEP 320. These specifications are an important part of the Jakarta EE platform and will
be considered for inclusion in a version of Jakarta EE that targets versions of Java SE where they
have been removed.

Table 9. Additional Java EE 8 Specification References

Java EE 8 Specification Jakarta EE Specification (future)

JavaBeans™ Activation Framework 1.1 Jakarta Activation 1.2

Java™ Architecture for XML Binding 2.3 Jakarta XML Binding 2.3

Java™ API for XML Web Services 2.3 Jakarta XML Web Services 2.3

SOAP with Attachments API for Java™ 1.3 Jakarta SOAP with Attachments 1.4

Web Services Metadata for the Java Platform 2.1 Jakarta Web Services Metadata 2.1

B.2.1. Activation 1.1 vs 1.2

The Java EE 8 Platform specification, dated July 31st, 2017, references JavaBeans™ Activation
Framework Specification Version 1.1 in appendix EE.C Related Documents. A Maintenance Release
of the JavaBeans™ Activation Framework was created and released in the JCP as version 1.2 dated
July 2017. JavaBeans Activation Framework 1.2 adds support for, and is included in, Java SE 9, and
is the version contributed to Eclipse.

B.2.2. SOAP with Attachments 1.3 vs 1.4

The Java EE 8 Platform specification, dated July 31st, 2017, references SOAP with Attachments API
for Java™ Version 1.3 in appendix EE.C Related Documents. A Maintenance Release of the SOAP
with Attachments API for Java™ was created and released as version 1.4 dated July 2017. The

238

https://openjdk.java.net/jeps/320

reference to SOAP with Attachments API for Java™ Version 1.3 in the Java EE 8 Platform
specification, released at the same time was simply an error, and it should have referenced version
1.4.

239

Appendix C: Revision History

C.1. Changes in Final Release for EE11
• Updated Java SE base version to 17.

• Removed requirement for SOAP with Attachments, XML Binding, Enterprise Web Services and
XML Web Services.

• Removed references to the Applet Container.

• Removed requirements related to the Java SecurityManager.

• Updated “Related Documents" for the updated Specifications in Jakarta EE 11.

C.2. Changes in Final Release for EE10
• Updated Java SE base version to 11.

• Added basic module-info.class requirements to API artifacts.

• Added restrictions concerning where jakarta package name usage is appropriate.

• Added SecurityManager deprecation.

• Removed applet requirements.

• Refactored profile requirements to reduce base requirements in Core Profile.

• Removed requirement for Entity Beans, both Container and Bean Managed Persistence (Jakarta
Enterprise Beans 4.0, Optional Features, Chapters 3 - 7)

• Removed requirement for embeddable EJB Container (Jakarta Enterprise Beans, Core Features
4.0, Chapter 17)

• Updated “Related Documents" for the updated Specifications in Jakarta EE 10.0.

C.3. Changes in Final Release EE9.1

C.3.1. Editorial Changes

• Added the support for implementations to run and certify using Java SE 11.

• Clarified the optional support for CORBA and the ORB.

• Updated “Related Documents" for the updated Specifications in Jakarta EE 9.1.

240

Appendix D: Related Documents
This specification refers to the following documents. The terms used to refer to the documents in
this specification are included in parentheses.

Jakarta™ EE Core Profile Specification, Version 11.0. Available at: https://jakarta.ee/specifications/
coreprofile/11/

Jakarta™ EE Web Profile Specification, Version 11.0. Available at: https://jakarta.ee/specifications/
webprofile/11/

Java™ Platform, Standard Edition (Java SE specification), v17. Available at: https://www.jcp.org/en/jsr/
detail?id=392

Java™ Platform, Standard Edition, v17 API Specification. Available at: https://docs.oracle.com/javase/
17/docs/

Jakarta™ Enterprise Beans Specification, Version 4.0. Available at: https://jakarta.ee/specifications/
enterprise-beans/4.0/

Jakarta™ Server Pages Specification, Version 4.0. Available at: https://jakarta.ee/specifications/pages/
4.0/

Jakarta™ Expression Language Specification, Version 6.0. Available at: https://jakarta.ee/
specifications/expression-language/6.0/

Jakarta™ Annotations Specification, Version 3.0. Available at: https://jakarta.ee/specifications/
annotations/3.0/

Jakarta™ Servlet Specification, Version 6.1. Available at: https://jakarta.ee/specifications/servlet/6.1/

JDBC™ 4.3 API (JDBC specification). Available at: https://jcp.org/en/jsr/detail?id=221

Java™ Naming and Directory Interface 1.2 Specification (JNDI specification). Available at:
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html

Jakarta™ Messaging Specification, Version 3.1. Available at: https://jakarta.ee/specifications/
messaging/3.1/

Jakarta™ Transaction Specification, Version 2.0. Available at: https://jakarta.ee/specifications/
transactions/2.0/

Jakarta™ Mail Specification, Version 2.1. Available at: https://jakarta.ee/specifications/mail/2.1/

Jakarta Activation, Version 2.1. Available at: https://jakarta.ee/specifications/activation/2.1/

Jakarta™ Connectors Specification, Version 2.1. Available at: https://jakarta.ee/specifications/
connectors/2.1/

Jakarta™ XML Web Services Specification, Version 4.0. Available at: https://jakarta.ee/specifications/
xml-web-services/4.0/

241

https://jakarta.ee/specifications/coreprofile/11/
https://jakarta.ee/specifications/coreprofile/11/
https://jakarta.ee/specifications/webprofile/11/
https://jakarta.ee/specifications/webprofile/11/
https://www.jcp.org/en/jsr/detail?id=392
https://www.jcp.org/en/jsr/detail?id=392
https://docs.oracle.com/javase/17/docs/
https://docs.oracle.com/javase/17/docs/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/pages/4.0/
https://jakarta.ee/specifications/pages/4.0/
https://jakarta.ee/specifications/expression-language/6.0/
https://jakarta.ee/specifications/expression-language/6.0/
https://jakarta.ee/specifications/annotations/3.0/
https://jakarta.ee/specifications/annotations/3.0/
https://jakarta.ee/specifications/servlet/6.1/
https://jcp.org/en/jsr/detail?id=221
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html
https://jakarta.ee/specifications/messaging/3.1/
https://jakarta.ee/specifications/messaging/3.1/
https://jakarta.ee/specifications/transactions/2.0/
https://jakarta.ee/specifications/transactions/2.0/
https://jakarta.ee/specifications/mail/2.1/
https://jakarta.ee/specifications/activation/2.1/
https://jakarta.ee/specifications/connectors/2.1/
https://jakarta.ee/specifications/connectors/2.1/
https://jakarta.ee/specifications/xml-web-services/4.0/
https://jakarta.ee/specifications/xml-web-services/4.0/

Jakarta™ SOAP with Attachments Specification, Version 3.0. Available at: https://jakarta.ee/
specifications/soap-attachments/3.0/

Jakarta™ RESTful Web Services Specification, Version 4.0. Available at: https://jakarta.ee/
specifications/restful-ws/4.0/

Jakarta™ Authorization Specification, Version 3.0. Available at: https://jakarta.ee/specifications/
authorization/3.0/

Jakarta™ Authentication Specification, Version 3.1. Available at: https://jakarta.ee/specifications/
authentication/3.1/

Jakarta™ Security Specification, Version 4.0. Available at: https://jakarta.ee/specifications/security/4.0/

Jakarta™ Debugging Support for Other Languages Specification, Version 2.0. Available at:
https://jakarta.ee/specifications/debugging/2.0/

Jakarta™ Standard Tag Library Specification, Version 3.0. Available at: https://jakarta.ee/
specifications/tags/3.0/

Jakarta™ Server Faces Specification, Version 4.1. Available at: https://jakarta.ee/specifications/faces/
4.1/

Jakarta™ Persistence Specification, Version 3.2. Available at: https://jakarta.ee/specifications/
persistence/3.2/

Jakarta™ Validation Specification, Version 3.1. Available at: https://jakarta.ee/specifications/bean-
validation/3.1/

Jakarta™ Interceptors Specification, Version 2.2. Available at: https://jakarta.ee/specifications/
interceptors/2.2/

Jakarta™ Contexts and Dependency Injection Specification, Version 4.1. Available at:
https://jakarta.ee/specifications/cdi/4.1/

Jakarta™ Dependency Injection Specification, Version 2.0. Available at: https://jakarta.ee/
specifications/dependency-injection/2.0/

Jakarta™ WebSocket Specification, Version 2.2. Available at: https://jakarta.ee/specifications/
websocket/2.2/

Jakarta™ JSON Processing Specification, Version 2.1. Available at: https://jakarta.ee/specifications/
jsonp/2.1/

Jakarta™ JSON Binding Specification, Version 3.0. Available at: https://jakarta.ee/specifications/jsonb/
3.0/

Jakarta™ Concurrency Specification, Version 3.1. Available at: https://jakarta.ee/specifications/
concurrency/3.1/

Jakarta™ Batch Specification, Version 2.1. Available at: https://jakarta.ee/specifications/batch/2.1/

242

https://jakarta.ee/specifications/soap-attachments/3.0/
https://jakarta.ee/specifications/soap-attachments/3.0/
https://jakarta.ee/specifications/restful-ws/4.0/
https://jakarta.ee/specifications/restful-ws/4.0/
https://jakarta.ee/specifications/authorization/3.0/
https://jakarta.ee/specifications/authorization/3.0/
https://jakarta.ee/specifications/authentication/3.1/
https://jakarta.ee/specifications/authentication/3.1/
https://jakarta.ee/specifications/security/4.0/
https://jakarta.ee/specifications/debugging/2.0/
https://jakarta.ee/specifications/tags/3.0/
https://jakarta.ee/specifications/tags/3.0/
https://jakarta.ee/specifications/faces/4.1/
https://jakarta.ee/specifications/faces/4.1/
https://jakarta.ee/specifications/persistence/3.2/
https://jakarta.ee/specifications/persistence/3.2/
https://jakarta.ee/specifications/bean-validation/3.1/
https://jakarta.ee/specifications/bean-validation/3.1/
https://jakarta.ee/specifications/interceptors/2.2/
https://jakarta.ee/specifications/interceptors/2.2/
https://jakarta.ee/specifications/cdi/4.1/
https://jakarta.ee/specifications/dependency-injection/2.0/
https://jakarta.ee/specifications/dependency-injection/2.0/
https://jakarta.ee/specifications/websocket/2.2/
https://jakarta.ee/specifications/websocket/2.2/
https://jakarta.ee/specifications/jsonp/2.1/
https://jakarta.ee/specifications/jsonp/2.1/
https://jakarta.ee/specifications/jsonb/3.0/
https://jakarta.ee/specifications/jsonb/3.0/
https://jakarta.ee/specifications/concurrency/3.1/
https://jakarta.ee/specifications/concurrency/3.1/
https://jakarta.ee/specifications/batch/2.1/

Jakarta™ Data Specification, Version 1.0. Available at: https://jakarta.ee/specifications/data/1.0/

Jakarta EE Specification Process (JESP), Version 1.2. Available at: https://jakarta.ee/about/jesp/

Extension Mechanism Architecture, Available at https://docs.oracle.com/javase/8/docs/technotes/
guides/extensions/index.html

Optional Package Versioning, Available at https://docs.oracle.com/javase/8/docs/technotes/guides/
extensions/index.html

JAR File Specification, Available at https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html

The Common Object Request Broker: Architecture and Specification (CORBA 2.3.1 specification),
Available at https://www.omg.org/cgi-bin/doc?formal/99-10-07

CORBA 2.6 - Chapter 26 - Secure Interoperability, Available at https://www.omg.org/cgi-bin/doc?
formal/01-12-30

IDL To Java™ Language Mapping Specification , Available at https://www.omg.org/cgi-bin/doc?ptc/
2000-01-08

Java™ Language To IDL Mapping Specification , Available at https://www.omg.org/cgi-bin/doc?ptc/
2000-01-06

Interoperable Naming Service, Available at https://www.omg.org/cgi-bin/doc?ptc/00-08-07

Transaction Service Specification (OTS specification), Available at https://www.omg.org/cgi-bin/doc?
formal/2001-11-03

The SSL Protocol, Version 3.0. Available at https://tools.ietf.org/html/rfc6101

Architectural Styles and the Design of Network-based Software Architectures (REST), R. Fielding,
Ph.d dissertation, University of California, Irvine, 2000. Available at https://ics.uci.edu/~fielding/pubs/
dissertation/top.htm

Java™ Community Process SM 2: Process Document, Version 2.10 (March 21, 2016). Available at
https://jcp.org/en/procedures/jcp2

243

https://jakarta.ee/specifications/data/1.0/
https://jakarta.ee/about/jesp/
https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
https://www.omg.org/cgi-bin/doc?formal/99-10-07
https://www.omg.org/cgi-bin/doc?formal/01-12-30
https://www.omg.org/cgi-bin/doc?formal/01-12-30
https://www.omg.org/cgi-bin/doc?ptc/2000-01-08
https://www.omg.org/cgi-bin/doc?ptc/2000-01-08
https://www.omg.org/cgi-bin/doc?ptc/2000-01-06
https://www.omg.org/cgi-bin/doc?ptc/2000-01-06
https://www.omg.org/cgi-bin/doc?ptc/00-08-07
https://www.omg.org/cgi-bin/doc?formal/2001-11-03
https://www.omg.org/cgi-bin/doc?formal/2001-11-03
https://tools.ietf.org/html/rfc6101
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://jcp.org/en/procedures/jcp2

	Jakarta EE Platform
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Introduction
	1.1. Acknowledgements for the Initial Version of Java EE
	1.2. Acknowledgements for Java EE Version 1.3
	1.3. Acknowledgements for Java EE Version 1.4
	1.4. Acknowledgements for Java EE Version 5
	1.5. Acknowledgements for Java EE Version 6
	1.6. Acknowledgements for Java EE Version 7
	1.7. Acknowledgements for Java EE Version 8
	1.8. Acknowledgements for Jakarta EE 8 and Beyond

	Chapter 2. Platform Overview
	2.1. Architecture
	2.2. Profiles
	2.3. Application Components
	2.3.1. Jakarta EE Server Support for Application Components

	2.4. Containers
	2.4.1. Container Requirements
	2.4.2. Jakarta EE Servers

	2.5. Resource Adapters
	2.6. Database
	2.7. Jakarta EE Standard Services
	2.7.1. HTTP
	2.7.2. HTTPS
	2.7.3. Jakarta Transaction API (JTA)
	2.7.4. JDBC™ API
	2.7.5. Jakarta Persistence API
	2.7.6. Jakarta Data API
	2.7.7. Jakarta™ Messaging
	2.7.8. Java Naming and Directory Interface™ (JNDI)
	2.7.9. Jakarta™ Mail
	2.7.10. Jakarta Activation Framework (JAF)
	2.7.11. XML Processing
	2.7.12. Jakarta Connectors
	2.7.13. Security Services
	2.7.14. XML Web Services
	2.7.15. Jakarta JSON Processing
	2.7.16. Jakarta JSON Binding
	2.7.17. Jakarta WebSocket
	2.7.18. Jakarta RESTful Web Services
	2.7.19. Jakarta Concurrency
	2.7.20. Jakarta Batch
	2.7.21. Jakarta Enterprise Beans

	2.8. Interoperability
	2.9. Flexibility of Product Requirements
	2.10. Jakarta EE Product Packaging
	2.11. Jakarta EE Product Extensions
	2.12. Platform Roles
	2.12.1. Jakarta EE Product Provider
	2.12.2. Application Component Provider
	2.12.3. Application Assembler
	2.12.4. Deployer
	2.12.5. System Administrator
	2.12.6. Tool Provider
	2.12.7. System Component Provider

	2.13. Platform Contracts
	2.13.1. Jakarta EE APIs
	2.13.2. Jakarta EE Service Provider Interfaces (SPIs)
	2.13.3. Network Protocols
	2.13.4. Deployment Descriptors and Annotations

	2.14. Changes in J2EE 1.3
	2.15. Changes in J2EE 1.4
	2.16. Changes in Java EE 5
	2.17. Changes in Java EE 6
	2.18. Changes in Java EE 7
	2.19. Changes in Java EE 8
	2.20. Changes in Jakarta EE 8
	2.21. Changes in Jakarta EE 9
	2.22. Changes in Jakarta EE 9.1
	2.23. Changes in Jakarta EE 10
	2.24. Changes in Jakarta EE 11

	Chapter 3. Security
	3.1. Introduction
	3.2. A Simple Example
	3.3. Security Architecture
	3.3.1. Goals
	3.3.2. Non Goals
	3.3.3. Terminology
	3.3.4. Container Based Security
	3.3.5. Distributed Security
	3.3.6. Authorization Model
	3.3.7. HTTP Login Gateways
	3.3.8. User Authentication
	3.3.9. Lazy Authentication

	3.4. User Authentication Requirements
	3.4.1. Login Sessions
	3.4.2. Required Login Mechanisms
	3.4.3. Unauthenticated Users
	3.4.4. Application Client User Authentication
	3.4.5. Resource Authentication Requirements

	3.5. Authorization Requirements
	3.5.1. Code Authorization
	3.5.2. Caller Authorization
	3.5.3. Propagated Caller Identities.
	3.5.4. Run As Identities

	3.6. Deployment Requirements
	3.7. Future Directions
	3.7.1. Auditing
	3.7.2. Instance-based Access Control
	3.7.3. User Registration

	Chapter 4. Transaction Management
	4.1. Overview
	4.2. Requirements
	4.2.1. Web Components
	4.2.2. Transactions in Web Component Life Cycles
	4.2.3. Transactions and Threads
	4.2.4. Jakarta Enterprise Beans Components
	4.2.5. Application Clients
	4.2.6. Transactional JDBC™ Technology Support
	4.2.7. Transactional Jakarta Messaging Support
	4.2.8. Transactional Resource Adapter (Connector) Support

	4.3. Transaction Interoperability
	4.3.1. Multiple Jakarta EE Platform Interoperability
	4.3.2. Support for Transactional Resource Managers

	4.4. Local Transaction Optimization
	4.4.1. Requirements
	4.4.2. A Possible Design

	4.5. Connection Sharing
	4.6. JDBC and Jakarta Messaging Deployment Issues
	4.7. Two-Phase Commit Support
	4.8. System Administration Tools

	Chapter 5. Resources, Naming, and Injection
	5.1. Overview
	5.1.1. Chapter Organization
	5.1.2. Required Access to the JNDI Naming Environment

	5.2. JNDI Naming Context
	5.2.1. The Application Component’s Environment
	5.2.2. Application Component Environment Namespaces
	5.2.3. Accessibility of Environment Entry Types
	5.2.4. Sharing of Environment Entries
	5.2.5. Annotations and Injection
	5.2.6. Annotations and Deployment Descriptors
	5.2.7. Other Naming Context Entries

	5.3. Responsibilities by Jakarta EE Role
	5.3.1. Application Component Provider’s Responsibilities
	5.3.2. Application Assembler’s Responsibilities
	5.3.3. Deployer’s Responsibilities
	5.3.4. Jakarta EE Product Provider’s Responsibilities

	5.4. Simple Environment Entries
	5.4.1. Application Component Provider’s Responsibilities

	5.5. Jakarta Enterprise Beans References
	5.5.1. Application Component Provider’s Responsibilities
	5.5.2. Application Assembler’s Responsibilities
	5.5.3. Deployer’s Responsibilities
	5.5.4. Jakarta EE Product Provider’s Responsibilities

	5.6. Web Service References
	5.7. Resource Manager Connection Factory References
	5.7.1. Application Component Provider’s Responsibilities
	5.7.2. Deployer’s Responsibilities
	5.7.3. Jakarta EE Product Provider’s Responsibilities
	5.7.4. System Administrator’s Responsibilities

	5.8. Resource Environment References
	5.8.1. Application Component Provider’s Responsibilities
	5.8.2. Deployer’s Responsibilities
	5.8.3. Jakarta EE Product Provider’s Responsibilities

	5.9. Message Destination References
	5.9.1. Application Component Provider’s Responsibilities
	5.9.2. Application Assembler’s Responsibilities
	5.9.3. Deployer’s Responsibilities
	5.9.4. Jakarta EE Product Provider’s Responsibilities

	5.10. UserTransaction References
	5.10.1. Application Component Provider’s Responsibilities
	5.10.2. Jakarta EE Product Provider’s Responsibilities

	5.11. TransactionSynchronizationRegistry References
	5.11.1. Application Component Provider’s Responsibilities
	5.11.2. Jakarta EE Product Provider’s Responsibilities

	5.12. ORB References (optional)
	5.12.1. Application Component Provider’s Responsibilities
	5.12.2. Jakarta EE Product Provider’s Responsibilities

	5.13. Persistence Unit References
	5.13.1. Application Component Provider’s Responsibilities
	5.13.2. Application Assembler’s Responsibilities
	5.13.3. Deployer’s Responsibility
	5.13.4. Jakarta EE Product Provider’s Responsibility
	5.13.5. System Administrator’s Responsibility

	5.14. Persistence Context References
	5.14.1. Application Component Provider’s Responsibilities
	5.14.2. Application Assembler’s Responsibilities
	5.14.3. Deployer’s Responsibility
	5.14.4. Jakarta EE Product Provider’s Responsibility
	5.14.5. System Administrator’s Responsibility

	5.15. Application Name and Module Name References
	5.15.1. Application Component Provider’s Responsibilities
	5.15.2. Jakarta EE Product Provider’s Responsibilities

	5.16. Application Client Container Property
	5.16.1. Application Component Provider’s Responsibilities
	5.16.2. Jakarta EE Product Provider’s Responsibilities

	5.17. Validator and Validator Factory References
	5.17.1. Application Component Provider’s Responsibilities
	5.17.2. Jakarta EE Product Provider’s Responsibilities

	5.18. Resource Definition and Configuration
	5.18.1. Guidelines
	5.18.2. Requirements Common to All Resource Definition Types
	5.18.3. DataSource Resource Definition
	5.18.4. Jakarta Messaging Connection Factory Resource Definition
	5.18.5. Jakarta Messaging Destination Definition
	5.18.6. Mail Session Definition
	5.18.7. Connector Connection Factory Definition
	5.18.8. Connector Administered Object Definition
	5.18.9. Concurrency Resource Definitions

	5.19. Default Data Source
	5.19.1. Jakarta EE Product Provider’s Responsibilities

	5.20. Default Jakarta Messaging Connection Factory
	5.20.1. Jakarta EE Product Provider’s Responsibilities

	5.21. Default Jakarta Concurrency Objects
	5.21.1. Jakarta EE Product Provider’s Responsibilities

	5.22. CDI Managed Bean References
	5.22.1. Application Component Provider’s Responsibilities
	5.22.2. Jakarta EE Product Provider’s Responsibilities

	5.23. Bean Manager References
	5.23.1. Application Component Provider’s Responsibilities
	5.23.2. Jakarta EE Product Provider’s Responsibilities

	5.24. Support for Dependency Injection

	Chapter 6. Application Programming Interface
	6.1. Required APIs
	6.1.1. Java Compatible APIs
	6.1.2. Required Jakarta Technologies
	6.1.3. Platform Prospective Specifications
	6.1.4. Optional Jakarta Technologies
	6.1.5. Removed Jakarta Technologies

	6.2. Java Platform, Standard Edition (Java SE) Requirements
	6.2.1. Programming Restrictions
	6.2.2. Jakarta EE Security Manager Related Requirements
	6.2.3. Additional Requirements

	6.3. Enterprise Beans 4.0 Requirements
	6.4. Servlet 6.1 Requirements
	6.5. Server Pages 4.0 Requirements
	6.6. Expression Language (EL) 6.0 Requirements
	6.7. Messaging 3.1 Requirements
	6.8. Transaction 2.0 Requirements
	6.9. Activation 2.1 Requirements
	6.10. Mail 2.1 Requirements
	6.11. Connectors 2.1 Requirements
	6.12. RESTful Web Services 4.0 Requirements
	6.13. WebSocket 2.2 (WebSocket) Requirements
	6.14. JSON Processing 2.1 (JSON-P) Requirements
	6.15. JSON Binding 3.0 (JSON-B) Requirements
	6.16. Concurrency 3.1 (Concurrency Utilities) Requirements
	6.17. Batch 2.1 Specification Requirements
	6.18. Authorization 3.0 Requirements
	6.19. Authentication 3.1 Requirements
	6.20. Security 4.0 Requirements
	6.21. Debugging Support for Other Languages Requirements 2.0
	6.22. Standard Tag Library for Jakarta Server Pages 3.0 Requirements
	6.23. Server Faces 4.1 Requirements
	6.24. Annotations 3.0 Requirements
	6.25. Persistence 3.2 Requirements
	6.26. Validation 3.1 Requirements
	6.27. Interceptors 2.2 Requirements
	6.28. Contexts and Dependency Injection (CDI) 4.1 Requirements
	6.29. Dependency Injection for Java 2.0 Requirements

	Chapter 7. Interoperability
	7.1. Introduction to Interoperability
	7.2. Interoperability Protocols
	7.2.1. Internet and Web Protocols
	7.2.2. OMG Protocols (optional)
	7.2.3. Java Technology Protocols
	7.2.4. Data Formats

	Chapter 8. Application Assembly and Deployment
	8.1. Application Development Life Cycle
	8.1.1. Component Creation
	8.1.2. Application Assembly
	8.1.3. Deployment

	8.2. Library Support
	8.2.1. Bundled Libraries
	8.2.2. Installed Libraries
	8.2.3. Library Conflicts
	8.2.4. Library Resources
	8.2.5. Dynamic Class Loading
	8.2.6. Examples

	8.3. Class Loading Requirements
	8.3.1. Web Container Class Loading Requirements
	8.3.2. Jakarta Enterprise Beans Container Class Loading Requirements
	8.3.3. Application Client Container Class Loading Requirements

	8.4. Application Assembly
	8.4.1. Assembling a Jakarta EE Application
	8.4.2. Adding and Removing Modules

	8.5. Deployment
	8.5.1. Deploying a Stand-Alone Jakarta EE Module
	8.5.2. Deploying a Jakarta EE Application
	8.5.3. Deploying a Library
	8.5.4. Module Initialization

	8.6. Jakarta EE Application XML Schema
	8.7. Common Jakarta EE XML Schema Definitions

	Chapter 9. Profiles
	9.1. Introduction
	9.2. Profile Definition
	9.3. General Rules for Profiles
	9.4. Expression of Requirements
	9.5. Requirements for All Jakarta EE Profiles
	9.6. Optional Features for Jakarta EE Profiles
	9.7. Full Jakarta™ EE Product Requirements

	Chapter 10. Application Clients
	10.1. Overview
	10.2. Security
	10.3. Transactions
	10.4. Resources, Naming, and Injection
	10.5. Application Programming Interfaces
	10.6. Packaging and Deployment
	10.7. Jakarta EE Application Client XML Schema

	Chapter 11. Service Provider Interface
	11.1. Jakarta™ Connectors
	11.2. Jakarta™ Authorization
	11.3. Jakarta™ Transactions
	11.4. Jakarta™ Persistence
	11.5. Jakarta™ Mail

	Chapter 12. Compatibility and Migration
	12.1. Compatibility
	12.1.1. Backwards Compatibility for Jakarta EE 11
	12.1.2. Backwards Compatibility for Jakarta EE 10
	12.1.3. Backwards Compatibility for Jakarta EE 9

	12.2. Migration
	12.2.1. Jakarta Persistence
	12.2.2. Jakarta XML Web Services (optional)

	Chapter 13. Component Specification Integration Requirements
	13.1. CDI Extended Concepts for Jakarta EE
	13.1.1. Functionality provided by the container to the bean in Jakarta EE
	13.1.2. Bean types for Jakarta EE component
	13.1.3. Scopes
	13.1.4. Default bean discovery mode for Jakarta EE
	13.1.5. Bean names in Jakarta EE

	13.2. Addition to programming model for Jakarta EE
	13.2.1. Managed beans in Jakarta EE
	13.2.2. EJB Session beans
	13.2.3. Producer methods on EJB session bean
	13.2.4. Producer field on EJB session bean
	13.2.5. Disposer methods on EJB session bean
	13.2.6. Jakarta EE components
	13.2.7. Resources
	13.2.8. Additional built-in beans
	13.2.9. Injected fields in Jakarta EE
	13.2.10. Initializer methods in Jakarta EE
	13.2.11. Inheritance of type-level metadata in Jakarta EE
	13.2.12. Inheritance of member-level metadata in Jakarta EE
	13.2.13. Specialization in Jakarta EE

	13.3. Dependency injection, lookup and EL in Jakarta EE
	13.3.1. Modularity in Jakarta EE
	13.3.2. EL name resolution
	13.3.3. Dependency injection in Jakarta EE

	13.4. Scopes and contexts in Jakarta EE
	13.4.1. Dependent pseudo-scope in Jakarta EE
	13.4.2. Passivation and passivating scopes in Jakarta EE
	13.4.3. Context management for built-in scopes in Jakarta EE

	13.5. Lifecycle of contextual instances
	13.5.1. Container invocations and interception in Jakarta EE

	13.6. Decorators in Jakarta EE
	13.6.1. Decorator beans in Jakarta EE

	13.7. Interceptor bindings in Jakarta EE
	13.7.1. Interceptor enablement and ordering in Jakarta EE
	13.7.2. Interceptor resolution in Jakarta EE

	13.8. Events in Jakarta EE
	13.8.1. Observer methods in EJB session beans

	13.9. Portable extensions in Jakarta EE
	13.9.1. The Bean interface in Jakarta EE
	13.9.2. InjectionTarget interface in Jakarta EE
	13.9.3. The BeanManager object in Jakarta EE
	13.9.4. Alternative metadata sources and EJB
	13.9.5. Addition to Container lifecycle events in Jakarta EE

	13.10. Packaging and deployment in Jakarta EE
	13.10.1. Bean archive with EJB Session Beans
	13.10.2. Type and Bean discovery for EJB

	13.11. Integration with Unified EL
	13.11.1. Bean name resolution in EL expressions
	13.11.2. Unified EL integration API

	13.12. CDI Specification References

	Chapter 14. Future Directions
	14.1. Jakarta EE SPI
	14.2. Java Platform Module System (JPMS)

	Appendix A: Deployment Descriptors
	A.1. Jakarta EE 11 schemas
	A.2. Jakarta EE 10 schemas
	A.3. Jakarta EE 9 schemas
	A.4. Java EE 8 / Jakarta EE 8 Schemas
	A.5. Java EE 7 Schemas
	A.5.1. Java EE 7 Application XML Schema
	A.5.2. Common Java EE 7 XML Schema Definitions
	A.5.3. Java EE 7 Application Client XML Schema

	A.6. Java EE 6 Schemas
	A.6.1. Java EE 6 Application XML Schema
	A.6.2. Common Java EE 6 XML Schema Definitions
	A.6.3. Java EE 6 Application Client XML Schema

	A.7. Java EE 5 Schemas
	A.7.1. Java EE 5 Application XML Schema
	A.7.2. Common Java EE 5 XML Schema Definitions
	A.7.3. Java EE 5 Application Client XML Schema

	A.8. J2EE 1.4 Schemas
	A.8.1. J2EE 1.4 Application XML Schema
	A.8.2. Common J2EE 1.4 XML Schema Definitions
	A.8.3. J2EE 1.4 Application Client XML Schema

	A.9. J2EE 1.3 DTDs
	A.9.1. J2EE:application 1.3 XML DTD
	A.9.2. J2EE:application-client 1.3 XML DTD

	A.10. J2EE 1.2 DTDs
	A.10.1. J2EE:application 1.2 XML DTD
	A.10.2. J2EE:application-client 1.2 XML DTD

	Appendix B: Java EE 8 and Jakarta EE 8 Comparison
	B.1. Java EE 8 and Jakarta EE 8 Specification Comparisons
	B.1.1. Transaction 1.2 vs 1.3
	B.1.2. Deployment 1.2 vs 1.7
	B.1.3. Concurrency 1.0 vs 1.1

	B.2. Java EE 8 Specification References
	B.2.1. Activation 1.1 vs 1.2
	B.2.2. SOAP with Attachments 1.3 vs 1.4

	Appendix C: Revision History
	C.1. Changes in Final Release for EE11
	C.2. Changes in Final Release for EE10
	C.3. Changes in Final Release EE9.1
	C.3.1. Editorial Changes

	Appendix D: Related Documents

