
Technology Compatibility Kit
Reference Guide for Jakarta Contexts

and Dependency Injection
Version 4.1

Table of Contents
Preface. 1

Who Should Use This Book . 1

Before You Read This Book . 1

How This Book Is Organized . 1

Getting Acquainted with the TCK . 3

1. Introduction (CDI TCK) . 4

1.1. TCK Primer. 4

1.2. Compatibility Testing. 4

1.2.1. Why Compatibility Is Important . 4

1.3. Compatibility Requirements . 5

1.3.1. Definitions . 5

1.3.2. Rules for Jakarta Contexts and Dependency Injection Version 4.1 Products 8

1.4. About the CDI TCK . 9

1.4.1. CDI TCK Specifications and Requirements . 9

1.4.2. CDI TCK Components. 10

1.5. Packages for Jakarta Contexts and Dependency Injection Version 4.1 11

2. Appeals Process . 12

2.1. What challenges to the TCK may be submitted?. 12

2.2. How these challenges are submitted?. 12

2.3. How and by whom challenges are addressed?. 12

2.4. How accepted challenges to the TCK are managed? . 12

3. Installation . 13

3.1. Obtaining the Software. 13

3.2. The TCK Environment. 13

3.2.1. Example of Setting up TCK to use WildFly . 14

4. Configuration . 15

4.1. TCK Properties . 15

4.2. Arquillian settings . 16

4.3. The Porting Package . 16

4.4. Using the CDI TCK with the Jakarta EE Core Profile . 16

4.5. Using the CDI TCK with the Java SE . 17

4.6. Configuring TestNG to execute the TCK . 17

4.7. Configuring your build environment to execute the TCK . 18

4.8. Configuring your application server to execute the TCK . 18

5. Reporting . 19

5.1. CDI TCK Coverage Metrics . 19

5.2. CDI TCK Coverage Report . 19

5.2.1. CDK TCK Assertions . 19

5.2.2. Producing the Coverage Report . 20

5.2.3. TestNG Reports . 21

Executing and Debugging Tests . 27

6. Running the Signature Test . 28

6.1. Obtaining the sigtest plugin. 28

6.2. Running the signature test. 28

6.3. CDI Lite Signature Tests . 33

6.4. Forcing a signature test failure. 33

7. Executing the Test Suite . 35

7.1. The Test Suite Runner . 35

7.2. Running the Tests In Standalone Mode . 35

7.3. Running the Core Tests In the Container . 35

7.4. Running the Tests In the Container - SE part. 36

7.5. Exporting the Test Archives. 36

8. Executing the Lang Model Test Suite . 38

8.1. Recommendation . 38

8.2. Example Weld Test Suite Runner . 38

Preface
This guide describes how to download, install, configure, and run the Technology Compatibility Kit
(TCK) used to verify the compatibility of an implementation of the Jakarta Contexts and
Dependency Injection.

The CDI TCK is built atop TestNG framework and Arquillian platform. The CDI TCK uses Arquillian
version 1.8.0.Final to execute the test suite.

The CDI TCK source is provided under Apache Public License 2.0. The final release of the CDI TCK is
subject to the Eclipse Foundation Technology Compatibility Kit License

Who Should Use This Book
This guide is for implementors of the Jakarta Context and Dependency Injection 4.1 technology to
assist in running the test suite that verifies the compatibility of their implementation.

Before You Read This Book
Before reading this guide, you should familiarize yourself with the Jakarta EE programming model,
specifically the Jakarta Enterprise Beans (EJB) 4.0 and the Jakarta Contexts and Dependency
Injection 4.1 specifications. A good resource for the Jakarta EE programming model is the Jakarta
EE web site.

The CDI TCK is based on the Jakarta Context and Dependency Injection technology specification.
Information about the specification, including links to the specification documents, can be found on
the CDI page.

Before running the tests in the CDI TCK, read and become familiar with the Arquillian testing
platform. A good starting point could be a series of Arquillian Guides.

How This Book Is Organized
If you are running the CDI TCK for the first time, read Introduction (CDI TCK) completely for the
necessary background information about the TCK. Once you have reviewed that material, perform
the steps outlined in the remaining chapters.

• Introduction (CDI TCK) gives an overview of the principles that apply generally to all
Technology Compatibility Kits (TCKs), outlines the appeals process and describes the CDI TCK
architecture and components. It also includes a broad overview of how the TCK is executed and
lists the platforms on which the TCK has been tested and verified.

• Appeals Process explains the process to be followed by an implementor, who wish to challenge
any test in the TCK.

• Installation explains where to obtain the required software for the CDI TCK and how to install it.
It covers both the primary TCK components as well as tools useful for troubleshooting tests.

• Configuration details the configuration of the JBoss Test Harness, how to create a TCK runner

1

http://www.apache.org/licenses/LICENSE-2.0
$$https://www.eclipse.org/legal/tck.php
http://jakarta.ee
http://jakarta.ee
https://jakarta.ee/specifications/cdi
http://arquillian.org/guides/

for the TCK test suite and the mechanics of how an in-container test is conducted.

• Reporting explains the test reports that are generated by the TCK test suite and introduces the
TCK audit report as a tool for measuring the completeness of the TCK in testing the CDI
specification and in understanding how testcases relate to the specification.

• Executing the Test Suite documents how the TCK test suite is executed. It covers both modes
supported by the TCK, standalone and in-container, and shows how to dump the generated test
artifacts to disk.

2

Getting Acquainted with the TCK
The CDI TCK must be used to ensure that your implementation conforms to the CDI specification.
This part introduces the TCK, gives some background about its purpose, states the requirements for
passing the TCK and outlines the appeals process.

In this part you will learn where to obtain the CDI TCK and supporting software. You are then
presented with recommendations of how to organize and configure the software so that you are
ready to execute the TCK.

Finally, it discusses the reporting provided by the TCK.

3

Chapter 1. Introduction (CDI TCK)
This chapter explains the purpose of a TCK and identifies the foundation elements of the CDI TCK.

1.1. TCK Primer
A TCK, or Technology Compatibility Kit, is one of the three required pieces for any specification (the
other two being the specification document and a compatible implementation). The TCK is a set of
tools and tests to verify that an implementation of the technology conforms to the specification. The
tests are the primary component, but the tools serve an equally critical role of providing a
framework and/or set of SPIs for executing the tests.

The tests in the TCK are derived from assertions in the written specification document. The
assertions are itemized in an XML document, where they each get assigned a unique identifier, and
materialize as a suite of automated tests that collectively validate whether an implementation
complies with the aforementioned assertions, and in turn the specification. For a particular
implementation to be certified, all of the required tests must pass (i.e., the provided test suite must
be run unmodified).

A TCK is entirely implementation agnostic. Ideally, it should validate assertions by consulting the
specification’s public API. However, when the information returned by the public API is not low-
level enough to validate the assertion, the implementation must be consulted directly. In this case,
the TCK provides an independent API as part of a porting package that enables this transparency.
The porting package must be implemented for each CDI implementation. CDI TCK Components
introduces the porting package and The Porting Package covers the requirements for implementing
it.

1.2. Compatibility Testing
The goal of any specification is to eliminate portability problems so long as the program which uses
the implementation also conforms to the rules laid out in the specification.

Executing the TCK is a form of compatibility testing. It’s important to understand that compatibility
testing is distinctly different from product testing. The TCK is not concerned with robustness,
performance or ease of use, and therefore cannot vouch for how well an implementation meets
these criteria. What a TCK can do is to ensure the exactness of an implementation as it relates to the
specification.

Compatibility testing of any feature relies on both a complete specification and a complete
compatible implementation. The compatible implementation demonstrates how each test can be
passed and provides additional context to the implementor during development for the
corresponding assertion.

1.2.1. Why Compatibility Is Important

Java platform compatibility is important to different groups involved with Java technologies for
different reasons:

4

• Compatibility testing is the means by which the Jakarta ensures that the Java platform does not
become fragmented as it’s ported to different operating systems and hardware.

• Compatibility testing benefits developers working in the Java programming language, enabling
them to write applications once and deploy them across heterogeneous computing
environments without porting.

• Compatibility testing enables application users to obtain applications from disparate sources
and deploy them with confidence.

• Conformance testing benefits Java platform implementors by ensuring the same extent of
reliability for all Java platform ports.

The CDI specification goes to great lengths to ensure that programs written for Jakarta EE are
compatible and the TCK is rigorous about enforcing the rules the specification lays down.

1.3. Compatibility Requirements
The compatibility requirements for Jakarta Contexts and Dependency Injection Version 4.1 consist
of meeting the requirements set forth by the rules and associated definitions contained in this
section.

1.3.1. Definitions

These definitions are for use only with these compatibility requirements and are not intended for
any other purpose.

Table 1. Definitions

Term Definition

API Definition Product A Product for which the only Java class files
contained in the product are those
corresponding to the application programming
interfaces defined by the Specifications, and
which is intended only as a means for formally
specifying the application programming
interfaces defined by the Specifications.

5

Term Definition

Computational Resource A piece of hardware or software that may vary
in quantity, existence, or version, which may be
required to exist in a minimum quantity and/or
at a specific or minimum revision level so as to
satisfy the requirements of the Test Suite.
Examples of computational resources that may
vary in quantity are RAM and file descriptors.
Examples of computational resources that may
vary in existence (that is, may or may not exist)
are graphics cards and device drivers. Examples
of computational resources that may vary in
version are operating systems and device
drivers.

Conformance Tests All tests in the Test Suite for an indicated
Technology Under Test, as distributed by the
Maintenance Lead, excluding those tests on the
Exclude List for the Technology Under Test.

Documented Made technically accessible and made known to
users, typically by means such as marketing
materials, product documentation, usage
messages, or developer support programs.

Edition A Version of the Java Platform. Editions include
Java Platform Standard Edition and Jakarta
Platform Enterprise Edition.

Exclude List The most current list of tests, distributed by the
Maintenance Lead or TCK Lead, that are not
required to be passed to certify conformance.
The Maintenance Lead or TCK Lead may add to
the Exclude List for that Test Suite as needed at
any time, in which case the updated Exclude List
supplants any previous Exclude Lists for that
Test Suite.

Libraries The class libraries for the Technology Under
Test. The Libraries for Jakarta Contexts and
Dependency Injection Version 4.1 are listed in
Packages for Jakarta Contexts and Dependency
Injection Version 4.1.

6

Term Definition

Location Resource A location of classes or native libraries that are
components of the test tools or tests, such that
these classes or libraries may be required to
exist in a certain location in order to satisfy the
requirements of the test suite. For example,
classes may be required to exist in directories
named in a CLASSPATH variable, or native
libraries may be required to exist in directories
named in a PATH variable.

Product A licensee product in which the Technology
Under Test is implemented or incorporated, and
that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an
Operating Mode. For example, a Product
supporting an Operating Mode that permits user
selection of an external encryption package may
have a Product Configuration that links the
Product to that encryption package.

Compatible Implementation (CI) The prototype or "proof of concept"
implementation of a Specification.

Resource A Computational Resource, a Location Resource,
or a Security Resource.

Rules These definitions and rules in this Compatibility
Requirements section of this User’s Guide.

Security Resource A security privilege or policy necessary for the
proper execution of the Test Suite. For example,
the user executing the Test Suite will need the
privilege to access the files and network
resources necessary for use of the Product.

Specifications The documents produced through the Jakarta EE
Specification Process that define a particular
Version of a Technology. The Specifications for
the Technology Under Test are referenced later
in this chapter.

TCK Lead Person responsible for maintaining TCK for the
Technology. TCK Lead is representative of Red
Hat Inc.

Technology Specifications and a compatible implementation
produced through the Jakarta EE Specification
Process.

7

Term Definition

Technology Under Test Specifications and the compatible
implementation for Jakarta Contexts and
Dependency Injection Version 3.0.

Test Suite The requirements, tests, and testing tools
distributed by the Maintenance Lead or TCK
Lead as applicable to a given Version of the
Technology.

Version A release of the Technology, as produced
through the Jakarta EE Specification Process.

1.3.2. Rules for Jakarta Contexts and Dependency Injection Version 4.1
Products

The following rules apply for each version of an operating system, software component, and
hardware platform Documented as supporting the Product:

CDI-1 The Product must be able to satisfy all applicable compatibility requirements, including
passing all Conformance Tests, in every Product Configuration and in every combination of Product
Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

CDI-1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test
Suite, testing may always use a Product Configuration of that Operating Mode providing that
Resource, even if other Product Configurations do not provide that Resource. Notwithstanding such
exceptions, each Product must have at least one set of Product Configurations of such Operating
Modes that is able to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy which has one or
more Product Configurations that cause Conformance Tests to fail may be tested using a Product
Configuration that allows all Conformance Tests to pass.

CDI-1.2 A Product Configuration of an Operating Mode that causes the Product to report only
version, usage, or diagnostic information is exempted from these compatibility rules.

CDI-1.3 A Product may contain an Operating Mode that selects the Edition with which it is
compatible. The Product must meet the compatibility requirements for the corresponding Edition
for all Product Configurations of this Operating Mode. This Operating Mode must affect no smaller
unit of execution than an entire Application.

CDI-1.4 An API Definition Product is exempt from all functional testing requirements defined here,
except the signature tests.

CDI-2 Some Conformance Tests may have properties that may be changed. Properties that can be
changed are identified in the configuration interview. Properties that can be changed are specified

8

in TCK Properties. Apart from changing such properties and other allowed modifications described
in this User’s Guide (if any), no source or binary code for a Conformance Test may be altered in any
way without prior written permission.

CDI-3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance Lead or
TCK Lead must be used to certify compliance.

CDI-4 The Exclude List associated with the Test Suite cannot be modified.

CDI-5 The Maintenance Lead or TCK Lead can define exceptions to these Rules. Such exceptions
would be made available to and apply to all licensees.

CDI-6 All hardware and software component additions, deletions, and modifications to a
Documented supporting hardware/software platform, that are not part of the Product but required
for the Product to satisfy the compatibility requirements, must be Documented and available to
users of the Product. For example, if a patch to a particular version of a supporting operating
system is required for the Product to pass the Conformance Tests, that patch must be Documented
and available to users of the Product.

CDI-7 The Product must contain the full set of public and protected classes and interfaces for all the
Libraries. Those classes and interfaces must contain exactly the set of public and protected
methods, constructors, and fields defined by the Specifications for those Libraries. No subsetting,
supersetting, or modifications of the public and protected API of the Libraries are allowed except
only as specifically exempted by these Rules.

CDI-8 Except for tests specifically required by this TCK to be recompiled (if any), the binary
Conformance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead or TCK
Lead must be used to certify compliance.

CDI-9 The functional programmatic behavior of any binary class or interface must be that defined
by the Specifications.

1.4. About the CDI TCK
The CDI TCK is designed as a portable, configurable and automated test suite for verifying the
compatibility of an implementation of the Jakarta CDI specification. The test suite is built atop
TestNG framework and Arquillian platform.

Each test class in the suite acts as a deployable unit. The deployable units, or artifacts, can be either
a WAR or an EAR.


The test archives are built with ShrinkWrap, a Java API for creating archives.
ShrinkWrap is a part of the Arquillian platform ecosystem.

1.4.1. CDI TCK Specifications and Requirements

This section lists the applicable requirements and specifications for the CDI TCK.

• Specification requirements - Software requirements for a CDI implementation are itemized in

9

section 1.2, "Relationship to other specifications" in the CDI specification, with details provided
throughout the specification. Generally, the CDI specification targets the Jakarta EE 11 platform
and will be aligned with its specifications.

• Jakarta Contexts and Dependency Injection 4.1 API - The Java API defined in the CDI
specification and provided by the compatible implementation.

• Testing platform - The CDI TCK requires version 1.8.0.Final of the Arquillian
(http://arquillian.org). The TCK test suite is based on TestNG 7.9.0(http://testng.org). .

• Porting Package - An implementation of SPIs that are required for the test suite to run the in-
container tests and at times extend the CDI 4.1 API to provide extra information to the TCK.

• TCK Audit Tool - An itemization of the assertions in the specification documents which are
cross-referenced by the individual tests. Describes how well the TCK covers the specification.

• Compatible implementation - A compatible implementation runtime for compatibility testing
of the CDI specification is the Jakarta Platform Enterprise Edition 10 compatible
implementation.

• Jarkarta Dependency Injection (DI) - CDI builds on DI, and as such CDI implementations must
additionally pass the Jakarta Dependency Injection TCK.

• The Jakarta Contexts and Dependency Injection Language Model TCK - The CDI Language
Model TCK included in the CDI TCK distribution must be run and passed by every CDI cmpatible
implementation.

• Jakarta Interceptors - CDI is an implementation of the Jakarta Interceptors specification.
Jakarta Interceptors has no TCK of its own, so the CDI TCK includes an extensive set of tests that
validate the Jakarta Interceptors concepts.

• Jakarta EE Profiles - Additional requirements for the Jakarta EE Web Profile and Jakarta EE
Full Platform are specified in the CDI EE standalone TCK distributed by the Platform TCK group.



The TCK distribution includes weld/porting-package-lib/weld-inject-tck-runner-
X.Y.Z-Q-tests.jar which contains two classes showing how the Weld compatible
implementation passes the CDI TCK. The source for these classes is available from
hhttps://github.com/weld/core/tree/{weld-version}/inject-tck-
runner/src/test/java/org/jboss/weld/atinject/tck

1.4.2. CDI TCK Components

The CDI TCK includes the following components:

• Arquillian 1.8.0.Final

• TestNG 7.9.0

• Porting Package SPIs - Extensions to the CDI SPIs to allow testing of a container.

• The test suite, which is a collection of TestNG tests, the TestNG test suite descriptor and
supplemental resources that configure CDI and other software components.

• The TCK audit is used to list out the assertions identified in the CDI specification. It matches the
assertions to testcases in the test suite by unique identifier and produces a coverage report.

10

http://arquillian.org
http://testng.org
hhttps://github.com/weld/core/tree/{weld-version}/inject-tck-runner/src/test/java/org/jboss/weld/atinject/tck
hhttps://github.com/weld/core/tree/{weld-version}/inject-tck-runner/src/test/java/org/jboss/weld/atinject/tck

The audit document is provided along with the TCK; at least 95% of assertions are tested. Each
assertion is defined with a reference to a chapter, section and paragraph from the specification
document, making it easy for the implementor to locate the language in the specification document
that supports the feature being tested.

• TCK documentation accompanied by release notes identifying updates between versions.

The CDI TCK has been tested on following platforms:

• Weld 6.0.0.Beta1 using Eclipse Temurin Java SE 17 on Linux and MacOS

• WildFly 31.x using Eclipse Temurin Java SE 17 on Linux and MacOS

• Weld 6.0.0.Beta1 using Eclipse Temurin Java SE 21 on Linux and MacOS

• WildFly 31.x using Eclipse Temurin Java SE 21 on Linux and MacOS

CDI supports Jakarta EE 11, Jakarta EE 11 Web Profile, Embeddable Jakarta Enterprise Beans 4.0.
The TCK will execute on any of these runtimes, but is only part of the CTS for Jakarta EE 11 and
Jakarta EE 11 Web Profile.

1.5. Packages for Jakarta Contexts and Dependency
Injection Version 4.1
The following is the list of packages that constitute the required class libraries for Jakarta Contexts
and Dependency Injection Version 4.1:

• jakarta.decorator

• jakarta.enterprise.context

• jakarta.enterprise.context.control

• jakarta.enterprise.context.spi

• jakarta.enterprise.event

• jakarta.enterprise.inject

• jakarta.enterprise.inject.build.compatible.spi;

• jakarta.enterprise.inject.literal

• jakarta.enterprise.inject.se

• jakarta.enterprise.inject.spi

• jakarta.enterprise.inject.spi.configurator

• jakarta.enterprise.invoke

• jakarta.enterprise.lang.model

• jakarta.enterprise.lang.model.declarations

• jakarta.enterprise.lang.model.types

• jakarta.enterprise.util

11

Chapter 2. Appeals Process
While the CDI TCK is rigorous about enforcing an implementation’s conformance to the Jakarta CDI
specification, it’s reasonable to assume that an implementor may discover new and/or better ways
to validate the assertions. The appeals process is defined by the Jakarta EE Jakarta EE TCK Process
1.0

2.1. What challenges to the TCK may be submitted?
Any test case (e.g., test class, @Test method), test case configuration (e.g., beans.xml), test beans,
annotations and other resources may be challenged by an appeal.

What is generally not challengeable are the assertions made by the specification. The specification
document is controlled by a separate process and challenges to it should be handled by the
Maintenance Lead or by sending an e-mail to link:mailto:cdi-dev@eclipse.org

2.2. How these challenges are submitted?
To submit a challenge, a new issue should be created in the CDI specification project using the label
challenge. Any communication regarding the issue should be pursed in the comments of the filed
issue for accurate record.

2.3. How and by whom challenges are addressed?
The challenges will be addressed in a timely fashion by the TCK Lead, as designated by Specification
Lead, Red Hat Inc. or his/her designate. The appellant can also monitor the process by following the
issue report filed in the CDI TCK project issues.

The current TCK Lead is listed on the CDI Project Summary Page on Jakarta EE.

2.4. How accepted challenges to the TCK are managed?
The worflow for TCK challenges is outlined in Jakarta EE TCK Process 1.0.

Periodically, an updated TCK will be released, containing tests altered due to challenges - no new
tests will be added. Implementations are required to pass the updated TCK. This release stream is
named 4.0.x, where x will be incremented.

Additionally, new tests will be added to the TCK improving coverage of the specification. We
encourage implementations to pass this TCK, however it is not required. This release stream is
named 3.y.z where y >= 1.

12

https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/cdiK
https://jakarta.ee/specifications/cdi
https://jakarta.ee/committees/specification/tckprocess/

Chapter 3. Installation
This chapter explains how to obtain the TCK and supporting software and provides
recommendations for how to install/extract it on your system.

3.1. Obtaining the Software
You can obtain a release of the CDI TCK project from the download page on the CDI specification
website. The release stream for Jakarta CDI is named 4.1.x. The CDI TCK is distributed as a ZIP file,
which contains the TCK artifacts (the test suite binary and source, porting package API binary and
source, the test suite configuration file, the audit source and report) in /artifacts and documentation
in /doc.

You can also download the current source code from GitHub repository.

Executing the TCK requires a Jakarta EE 11 or better runtime environment (i.e., application server),
to which the test artifacts are deployed and the individual tests are invoked. The TCK tests do not
depend on any particular Jakarta EE implementation.

One Jakarta Contexts and Dependency Injection compatible implementation project is named Weld.
The release stream for Jakarta CDI 4.1 TCK is named 4.1.x. The compatible Weld release stream is
6.0. You can obtain the latest release from the download page on the Weld website.


Weld is not required for running the CDI TCK, but it can be used as a reference for
familiarizing yourself with the TCK before testing your own CDI implementation.

Naturally, to execute Java programs, you must have a Java SE runtime environment. The TCK
requires Java SE 17 or better, which you can obtain from the Eclipse Temurin website.

3.2. The TCK Environment
The TCK requires the following two runtime environments:

• Java SE 17 or better

• A Maven installation, version 3.9 or higher

• A Jakarta EE 11 runtime (e.g., WildFly 31.x or GlassFish 7.0.x

You should refer to vendor instructions for how to install the runtime environment.

The rest of the TCK software can simply be extracted. Extract the TCK distribution to create a core-
tck-4.x.y directory. The resulting folder structure is shown here:

 This layout is assumed through all descriptions in this reference guide.

core-tck-4.x.y/
 artifacts/
 doc/

13

https://download.eclipse.org/jakartaee/cdi/
https://github.com/eclipse-ee4j/cdi-tck
http://weld.cdi-spec.org/download/
https://adoptium.net/temurin/releases/

 lib/
 weld/
 LICENSE
 README.adoc

Each test class is treated as an individual artifact. All test methods (i.e., methods annotated with
@Test) in the test class are run in the application, meaning bean discovery occurs exactly once per
artifact and the same BeanManager is used by each test method in the class.

3.2.1. Example of Setting up TCK to use WildFly

• First, you should download WildFly 31.x from the WildFly project page.

• Set the JBOSS_HOME environment variable to the root directory path for the location where you
have unpacked WildFly software.

The CDI TCK distribution includes maven project that allows one to update a bare WildFly
distribution to match the CDI API artifacts and Weld version references by the TCK. To update
WildFly, run the following Maven commands from within the core-tck-4.x.y/weld/jboss-as directory:

• Integrate the Weld jars into WildFly:

mvn -Pupdate-jboss-as package

• Next, update the Jakarta API jars

mvn -Pupdate-jakarta-apis package

• Next, integrate the TCK ext jar into WildFly:

mvn -Dtck package

14

http://www.wildfly.org/downloads/

Chapter 4. Configuration
This chapter lays out how to configure the TCK Harness by specifying the SPI implementation
classes, defining the target container connection information, and various other switches. You then
learn how to setup a TCK runner project that executes the TCK test suite, putting these settings into
practice.

4.1. TCK Properties
System properties and/or the resource META-INF/cdi-tck.properties, a Java properties file, are used
to configure the TCK.

You should set the following required properties:

Table 2. Required TCK Configuration Properties

Property = Example Value Description

org.jboss.cdi.tck.libraryDirectory=/path/to/extra/l
ibraries

The directory containing extra JARs to be placed
in the test archive library directory such as the
porting package implementation.

org.jboss.cdi.tck.cdiCoreMode=true Enable the CDI Core mode. When enabled, none
of the org.jboss.cdi.tck.test* properties below
related to Jakarta EE tests are required.

org.jboss.cdi.tck.testDataSource=java:jboss/datas
ources/ExampleDS

A few TCK tests work with Jakarta Persistence
services and require a data source to be
provided. This property defines JNDI name of
such resource. Required for the tests within the
persistence test group.

org.jboss.cdi.tck.testJmsConnectionFactory=java:
/ConnectionFactory

The JNDI name of the JMS test
ConnectionFactory. Required for the tests within
the jms test group.

org.jboss.cdi.tck.testJmsQueue=java:/queue/test The JNDI name of the JMS test Queue. Required
for the tests within the jms test group.

org.jboss.cdi.tck.testJmsTopic=java:/topic/test The JNDI name of the JMS test Topic. Required
for the tests within the jms test group.

Table 3. Optional TCK Configuration Properties

Property = Example Value Description

org.jboss.cdi.tck.testTimeoutFactor=200 Tests use this percentage value to adjust the
final timeout (e.g. when waiting for some async
processing) so that it’s possible to configure
timeouts according to the testing runtime
performance and throughput. The value must be
an integer greater than zero. The default value is
100% - i.e. timeouts will remain the same.

15

4.2. Arquillian settings
The Arquillian testing platform will look for configuration settings in a file named arquillian.xml in
the root of your classpath. If it exists it will be auto loaded, else default values will be used. This file
is not a requirement however it’s very useful for container configuration. See an example
configuration for JBoss TCK runner:

 weld/jboss-tck-runner/src/test/wildfly8/arquillian.xml

4.3. The Porting Package
The CDI TCK relies on an implementation of the porting package to function. There are times when
the tests need to tap directly into the CDI implementation to manipulate behavior or verify results.
The porting package is Java package named "org.jboss.cdi.tck.spi" and includes a set of SPIs that
provide the TCK with this level of access without tying the tests to a given implementation.

The SPI classes in the CDI TCK are as follows:

• org.jboss.cdi.tck.spi.Beans

• org.jboss.cdi.tck.spi.Contexts

• org.jboss.cdi.tck.spi.Contextuals

• org.jboss.cdi.tck.spi.CreationalContexts

• org.jboss.cdi.tck.spi.EL

Please consult the JavaDoc for these interfaces for the implementation requirements.

4.4. Using the CDI TCK with the Jakarta EE Core Profile
You can configure the CDI TCK to just run tests related to the CDI Lite specification appropriate for
the Jakarta EE Core Profile by excluding TestNG groups javaee-full, se, e.g. via a maven-surefire-
plugin configuration like:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <excludedGroups>cdi-full,se</excludedGroups>
 <dependenciesToScan>
 <dependency>jakarta.enterprise:cdi-tck-core-impl</dependency>
 </dependenciesToScan>
 </configuration>
 </plugin>

16

4.5. Using the CDI TCK with the Java SE
You can configure the CDI TCK to just run tests appropriate to the Java SE runtime by including the
TestNG group se and arquillian, e.g. via a maven-surefire-plugin configuration like:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <groups>se,arquillian</groups>
 <dependenciesToScan>
 <dependency>jakarta.enterprise:cdi-tck-core-impl</dependency>
 </dependenciesToScan>
 </configuration>
 </plugin>


The arquillian group specification is needed due to an issue open issue with how
the Arquillian TestNG integration behaves: ARQ-395

4.6. Configuring TestNG to execute the TCK
The CDI TCK is built atop Arquillian and TestNG, and it’s TestNG that is responsible for selecting the
tests to execute, the order of execution, and reporting the results. Detailed TestNG documentation
can be found at testng.org.

Certain TestNG configuration file must be run by TestNG (described by the TestNG documentation
as "with a testng.xml file") unmodified for an implementation to pass the TCK. The TCK distribution
contains the configuration file accurate at the date of the release - artifacts/cdi-tck-impl-suite.xml.
However this artifact may not be up to date due to unresolved challenges or pending releases.
Therefore a canonical configuration file exists. This file is located in the CDI TCK source code
repository at ${CORRESPONDING_BRANCH_ROOT}/impl/src/main/resources/tck-tests.xml.


The canonical configuration file for CDI TCK is located at https://github.com/
eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml.

This file also allows tests to be excluded from a run:

<suite name="CDI TCK" verbose="0" configfailurepolicy="continue">
 <test name="CDI TCK">
 ...
 <classes>
 <class name=
"org.jboss.cdi.tck.tests.context.application.ApplicationContextTest">
 <methods>
 <exclude name="testApplicationScopeActiveDuringServiceMethod"/>
 </methods>
 </class>

17

https://github.com/arquillian/arquillian-core/issues/395
http://testng.org/doc/documentation-main.html
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml

 </classes>
 ...
 </test>
</suite>



Additionally there is available canonical configuration file at https://github.com/
eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests-previous.xml.
Please note that this exclude list serves only for the previous micro version of TCK
release! This means that if the latest version of TCK is e.g. 4.0.1 then this exclude
list is valid only for the version 4.0.0 and invalid for any other version!

TestNG provides extensive reporting information. Depending on the build tool or IDE you use, the
reporting will take a different format. Please consult the TestNG documentation and the tool
documentation for more information.

4.7. Configuring your build environment to execute
the TCK
It’s beyond the scope of this guide to describe in how to set up your build environment to run the
TCK. The TestNG documentation provides extensive information on launching TestNG using the
Java, Ant, Eclipse or IntelliJ IDEA.

4.8. Configuring your application server to execute the
TCK
The TCK makes use of the Java 1.4 keyword assert; you must ensure that the JVM used to run the
application server is started with assertions enabled. See Programming With Assertions for more
information on how to enable assertions.

Tests within the installedLib test group require the CDI TCK cdi-tck-ext-lib artifact to be installed as
a library (see also Jakarta EE 11 specification, section EE.10.2.2 "Installed Libraries").

Tests within the systemProperties test group require the following system properties to be set:

Name Value

cdiTckExcludeDummy true

Tests within SE test groups require execution in a separate JVM instance with isolated classpath
including all required dependencies.

18

https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests-previous.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests-previous.xml
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable

Chapter 5. Reporting
This chapter covers the two types of reports that can be generated from the TCK, an assertion
coverage report and the test execution results. The chapter also justifies why the TCK is good
indicator of how accurately an implementation conforms to the CDI specification.

5.1. CDI TCK Coverage Metrics
The CDI TCK coverage has been measured as follows:

• Assertion Breadth Coverage

The CDI TCK provides at least 95% coverage of identified assertions with test cases.

• Assertion Depth Coverage

The assertion depth coverage has not been measured, as, when an assertion requires more than
one testcase, these have been enumerated in an assertion group and so are adequately described by
the assertion breadth coverage.

• API Signature Coverage

The CDI TCK covers 100% of all API public methods using the Java CTT Sig Test tool.

5.2. CDI TCK Coverage Report
A specification can be distilled into a collection of assertions that define the behavior of the
software. This section introduces the CDI TCK coverage report, which documents the relationship
between the assertions that have been identified in the Jakarta CDI specification document and the
tests in the TCK test suite.

The structure of this report is controlled by the assertion document, so we’ll start there.

5.2.1. CDK TCK Assertions

The CDI TCK developers have analyzed the Jakarta CDI specification document and identified the
assertions that are present in each chapter. Here’s an example of one such assertion found in
section 2.3.3:

Any bean may declare multiple qualifier types.

The assertions are listed in the XML file impl/src/main/resources/tck-audit.xml in the CDI TCK
distribution. Each assertion is identified by the section identifier of the specification document in
which it resides and assigned a unique paragraph identifier to narrow down the location of the
assertion further. To continue with the example, the assertion shown above is listed in the tck-
audit.xml file using this XML fragment:

 <section id="declaring_bean_qualifiers" title="Declaring the qualifiers of a

19

bean">
 ...
 <assertion id="d">
 <text>Any bean may declare multiple qualifier types.</type>
 </assertion>
 ...
 </section>

The strategy of the CDI TCK is to write a test which validates this assertion when run against an
implementation. A test case (a method annotated with @Test in a test class) is correlated with an
assertion using the @org.jboss.test.audit.annotations.SpecAssertion annotation as follows:

@Test
@SpecAssertion(section = DECLARING_BEAN_QUALIFIERS, id = "d")
public void testMultipleQualifiers()
{
 Bean<?> model = getBeans(Cod.class, new ChunkyBinding(true), new WhitefishBinding()
).iterator().next();
 assert model.getBindings().size() == 3;
}


Section identifiers are not used directly. Instead automatically generated constants
are applied.

To help evaluate the distribution of coverage for these assertions, the TCK provides a detailed
coverage report. This report is also useful to help implementors match tests with the language in
the specification that supports the behavior being tested.

5.2.2. Producing the Coverage Report

The coverage report is an HTML report generated as part of the TCK project build. Specifically, it is
generated by an annotation processor that attaches to the compilation of the classes in the TCK test
suite, another tool from the JBoss Test Utils project. The report is only generated when using Java 6
or above, as it requires the annotation processor.

mvn clean install


You must run clean first because the annotation processor performs it’s work
when the test class is being compiled. If compilation is unnecessary, then the
assertions referenced in that class will not be discovered.

The report is written to the file target/coverage.html in the same project. The report has five
sections:

1. Chapter Summary - Lists the chapters (that contain assertions) in the specification document
along with total assertions, tests and coverage percentage.

20

2. Section Summary - Lists the sections (that contain assertions) in the specification document
along with total assertions, tests and coverage percentage.

3. Coverage Detail - Each assertion and the test that covers it, if any.

4. Unmatched Tests - A list of tests for which there is no matching assertion (useful during TCK
development).

5. Unversioned Tests - A list of tests for which there is no @SpecVersion annotation on the test
class (useful during TCK development).

The coverage report is color coded to indicate the status of an assertion, or group of assertions. The
status codes are as follows:

• Covered - a test exists for this assertion

• Not covered - no test exists for this assertion

• Problematic - a test exists but is currently disabled. For example, this may be because the test is
under development

• Untestable - the assertion has been deemed untestable; a note, explaining why, is normally
provided

For reasons provided in the tck-audit.xml document and presented in the coverage report, some
assertions are not testable.

The coverage report does not give any indication as to whether the tests are passing. That’s where
the TestNG reports come in.

5.2.3. TestNG Reports

The CDI TCK test suite is really just a TestNG test suite. That means an execution of the CDI TCK test
suite produces the same reports as TestNG does. This section will go over those reports and show
you where to find each of them.

Maven, Surefire and TestNG

When the CDI TCK test suite is executed during the Maven test phase of the TCK runner project,
TestNG is invoked indirectly through the Maven Surefire plugin. Surefire is a test execution
abstraction layer capable of executing a mix of tests written for JUnit, TestNG, and other supported
test frameworks.

Why is this relevant? It means two things. First, it means that you are going to get a summary of the
test run on the commandline. Here’s the output generated when the tests are run using standalone
mode.

 T E S T S

Running TestSuite
[XmlMethodSelector]
CLASSNAME:org.jboss.testharness.impl.testng.DisableIntegrationTestsMethodSelector

21

[XmlMethodSelector] SETTING PRIORITY:0
[XmlMethodSelector]
CLASSNAME:org.jboss.testharness.impl.testng.ExcludeIncontainerUnderInvestigationMethod
Selector
[XmlMethodSelector] SETTING PRIORITY:0
Tests run: 441, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 22.816 sec

Results :

Tests run: 441, Failures: 0, Errors: 0, Skipped: 0


The number of tests executed, the execution time, and the output will differ when
you run the tests using in-container mode as the CDI TCK requires.

If the Maven reporting plugin that complements Surefire is configured properly, Maven will also
generate a generic HTML test result report. That report is written to the file test-report.html in the
target/surefire-reports directory of the TCK runner project. It shows how many tests were run, how
many failed and the success rate of the test run.

The one drawback of the Maven Surefire report plugin is that it buffers the test failures and puts
them in the HTML report rather than outputting them to the commandline. If you are running the
test suite to determine if there are any failures, it may be more useful to get this information in the
foreground. You can prevent the failures from being redirected to the report using the following
commandline switch:

mvn test -Dsurefire.useFile=false

The information that the Surefire provides is fairly basic and the detail pales in comparison to what
the native TestNG reports provide.

TestNG HTML Reports

TestNG produces several HTML reports for a given test run. All the reports can be found in the
target/surefire-reports directory in the TCK runner project. Below is a list of the three types of
reports:

• Test Summary Report

• Test Suite Detail Report

• Emailable Report

The first report, the test summary report, shown below, is written to the file index.html. It produces
the same information as the generic Surefire report.

22

The summary report links to the test suite detail report, which has a wealth of information. It
shows a complete list of test groups along with the classes in each group, which groups were
included and excluded, and any exceptions that were raised, whether from a passed or failed test. A
partial view of the test suite detail report is shown below.

The test suite detail report is very useful, but it borderlines on complex. As an alternative, you can
have a look at the emailable report, which is a single HTML document that shows much of the same
information as the test suite detail report in a more compact layout. A partial view of the emailable
report is shown below.

23

Now that you have seen two ways to get test results from the Maven test execution, let’s switch over
to the IDE, specifically Eclipse, and see how it presents TestNG test results.

Test Results in the TestNG Plugin View

After running a test in Eclipse, the test results are displayed in the TestNG plugin view, as shown
below.

24

The view offers two lists. The first is a list of all methods (tests) in the class flagged as either passed
or failed. The second is a list of methods (tests) in the class that failed. If there is a test failure, you
can click on the method name to get the stacktrace leading up to the failure to display in the lower
frame.

You can also find the raw output of the TestNG execution in the IDE console view. In that view, you

25

can click on a test in the stacktrace to open it in the editor pane.

One of the nice features of TestNG is that it can keep track of which tests failed and offer to run only
those tests again. You can also rerun the entire class. Buttons are available for both functions at the
top of the view.

26

Executing and Debugging Tests
In this part you learn how to execute the CDI TCK on the Weld compatible implementation. First,
you are walked through the steps necessary to execute the test suite on Weld. Then you discover
how to modify the TCK runner to execute the test suite on your own implementation. Finally, you
learn how to debug tests from the test suite in Eclipse.

27

Chapter 6. Running the Signature Test
One of the requirements of an implementation passing the TCK is for it to pass the CDI signature
test. This section describes how the signature file is generated and how to run it against your
implementation.

6.1. Obtaining the sigtest plugin
The sigtest plugin is availble from Maven Central using a dependency like:

...
 <plugin>
 <groupId>jakarta.tck</groupId>
 <artifactId>sigtest-maven-plugin</artifactId>
 <version>2.2</version>
 </plugin>

The source for the sigtest plugin can be found here: https://github.com/eclipse-ee4j/jakartaee-tck-
tools/tree/master/tools/sigtest

6.2. Running the signature test
To run the signature test, use a pom file like that found in https://github.com/jakartaee/cdi-tck/blob/
master/impl/src/main/resources/sigtest-pom.xml and shown here:

<?xml version="1.0"?>
<!-- Sample maven pom to verify signatures -->
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <!-- For access to staging repos, add -Pstaging -->
 <parent>
 <groupId>org.eclipse.ee4j</groupId>
 <artifactId>project</artifactId>
 <version>1.0.9</version>
 </parent>

 <groupId>jakarta.enterprise</groupId>
 <artifactId>cdi-tck-sigtest</artifactId>
 <version>4.1</version>
 <name>CDI TCK Signature Tests</name>
 <description>CDI TCK Signature test validation of CDI dependent API
jars</description>
 <properties>
 <!-- Set the api jar artifact versions here -->
 <annotations.api.version>3.0.0-M1</annotations.api.version>

28

https://github.com/eclipse-ee4j/jakartaee-tck-tools/tree/master/tools/sigtest
https://github.com/eclipse-ee4j/jakartaee-tck-tools/tree/master/tools/sigtest
https://github.com/jakartaee/cdi-tck/blob/master/impl/src/main/resources/sigtest-pom.xml
https://github.com/jakartaee/cdi-tck/blob/master/impl/src/main/resources/sigtest-pom.xml

 <interceptors.api.version>2.2.0-M1</interceptors.api.version>
 <atinject.api.version>2.0.1</atinject.api.version>
 <el.api.version>5.0.1</el.api.version>
 <cdi.api.version>4.1.0.Beta1</cdi.api.version>
 </properties>

 <!-- Set the api jar artifact dependencies here -->
 <dependencies>
 <dependency>
 <groupId>jakarta.annotation</groupId>
 <artifactId>jakarta.annotation-api</artifactId>
 <version>${annotations.api.version}</version>
 </dependency>
 <dependency>
 <groupId>jakarta.el</groupId>
 <artifactId>jakarta.el-api</artifactId>
 <version>${el.api.version}</version>
 </dependency>
 <dependency>
 <groupId>jakarta.interceptor</groupId>
 <artifactId>jakarta.interceptor-api</artifactId>
 <version>${interceptors.api.version}</version>
 </dependency>
 <dependency>
 <groupId>jakarta.inject</groupId>
 <artifactId>jakarta.inject-api</artifactId>
 <version>${atinject.api.version}</version>
 </dependency>
 <dependency>
 <groupId>jakarta.enterprise</groupId>
 <artifactId>jakarta.enterprise.lang-model</artifactId>
 <version>${cdi.api.version}</version>
 </dependency>
 <dependency>
 <groupId>jakarta.enterprise</groupId>
 <artifactId>jakarta.enterprise.cdi-api</artifactId>
 <version>${cdi.api.version}</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>unpack-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>unpack-dependencies</goal>

29

 </goals>
 <configuration>
 <stripVersion>true</stripVersion>
 <overWriteReleases>true</overWriteReleases>
 <outputDirectory>target/classes</outputDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>jakarta.tck</groupId>
 <artifactId>sigtest-maven-plugin</artifactId>
 <version>2.2</version>
 <executions>
 <execution>
 <id>sigtest</id>
 <phase>verify</phase>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <sigfile>cdi-api-jdk17.sig</sigfile>
 <packages>
jakarta.decorator,jakarta.enterprise.**,jakarta.interceptor</packages>
 <classes>target/classes</classes>
 <report>cdi-sig-report.txt</report>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Your version should specify the dependencies on these jars as used in your compatible
implementation.

(base) starksm@Scotts-Mac-Studio impl % mvn -Djdk.major.version=21 -Dsignature
process-resources
...
[INFO] --- sigtest:2.1:check (sigtest) @ cdi-tck-sigtest ---
[INFO] Packages: jakarta.decorator,jakarta.enterprise.**,jakarta.interceptor
Feb 16, 2024 11:42:25 PM com.sun.tdk.signaturetest.SignatureTest parseParameters
INFO: SignatureTest.args: [-FileName, /Users/starksm/Dev/Jakarta/rh-cdi-
tck/impl/src/main/resources/cdi-api-jdk17.sig, -static, -b, -Mode, bin, -ApiVersion,
4.1, -PackageWithoutSubpackages, jakarta.decorator, -Package, jakarta.enterprise,
-PackageWithoutSubpackages, jakarta.interceptor, -BootCP, -Classpath,
/Users/starksm/Dev/Jakarta/rh-cdi-
tck/impl/src/main/resources/target/classes:/Users/starksm/.m2/repository/jakarta/annot
ation/jakarta.annotation-api/3.0.0-M1/jakarta.annotation-api-3.0.0-

30

M1.jar:/Users/starksm/.m2/repository/jakarta/el/jakarta.el-api/5.0.1/jakarta.el-api-
5.0.1.jar:/Users/starksm/.m2/repository/jakarta/interceptor/jakarta.interceptor-
api/2.2.0-M1/jakarta.interceptor-api-2.2.0-
M1.jar:/Users/starksm/.m2/repository/jakarta/inject/jakarta.inject-
api/2.0.1/jakarta.inject-api-
2.0.1.jar:/Users/starksm/.m2/repository/jakarta/enterprise/jakarta.enterprise.lang-
model/4.1.0.Beta1/jakarta.enterprise.lang-model-
4.1.0.Beta1.jar:/Users/starksm/.m2/repository/jakarta/enterprise/jakarta.enterprise.cd
i-api/4.1.0.Beta1/jakarta.enterprise.cdi-api-4.1.0.Beta1.jar]
[INFO] SignatureTest report
Base version: 4.1.0-SNAPSHOT
Tested version: 4.1
Check mode: bin [throws removed]
Constant checking: on

Warning: The return type java.lang.reflect.Member can't be resolved
Warning: The return type java.lang.reflect.Member can't be resolved
Warning: The return type java.lang.reflect.Member can't be resolved

[INFO] /Users/starksm/Dev/Jakarta/rh-cdi-tck/impl/src/main/resources/cdi-sig-
report.txt: 0 failures in /Users/starksm/Dev/Jakarta/rh-cdi-
tck/impl/src/main/resources/cdi-api-jdk17.sig
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.021 s
[INFO] Finished at: 2024-02-16T23:42:25-06:00
[INFO] --

You can ignore the following warnings: "The return type java.lang.reflect.Member can't be
resolved"

The important thing is that the mvn version shows "BUILD SUCCESS".

Another example that just specifies a compatible implementation test as the dependency to validate
the API artifact signatures from the transitive dependencies is pom file like that found in the cdi
dist artifacts/sigtest-weld.xml and shown here:

<?xml version="1.0"?>
<!-- Sample maven pom to verify signatures using only the weld-core-imp artifiact and
its dependencies -->
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <!-- For access to staging repos, add -Pstaging -->
 <parent>
 <groupId>org.eclipse.ee4j</groupId>
 <artifactId>project</artifactId>

31

 <version>1.0.9</version>
 </parent>

 <groupId>jakarta.enterprise</groupId>
 <artifactId>cdi-tck-weld-sigtest</artifactId>
 <version>4.0</version>
 <name>CDI TCK Signature Tests</name>
 <description>CDI TCK Signature test validation of CDI dependent API
jars</description>
 <properties>
 <!-- Set the Weld version to test -->
 <weld.version>6.0.0.Beta1</weld.version>
 </properties>

 <!-- Set the api jar artifact dependencies here -->
 <dependencies>
 <dependency>
 <groupId>org.jboss.weld</groupId>
 <artifactId>weld-core-impl</artifactId>
 <version>${weld.version}</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>unpack-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>unpack-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>target/classes</outputDirectory>
 <overWriteReleases>false</overWriteReleases>
 <overWriteSnapshots>false</overWriteSnapshots>
 <overWriteIfNewer>true</overWriteIfNewer>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>jakarta.tck</groupId>
 <artifactId>sigtest-maven-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>sigtest</id>

32

 <phase>verify</phase>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <sigfile>cdi-api-jdk17.sig</sigfile>
 <packages>
jakarta.decorator,jakarta.enterprise.**,jakarta.interceptor</packages>
 <classes>target/classes</classes>
 <report>cdi-sig-report.xml</report>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

To verify the signatures of the Weld version specified in the artifacts/sigtest-weld-pom.xml, run:

% mvn -f artifacts/sigtest-weld-pom.xml verify
...
[INFO] /Users/starksm/Dev/Jakarta/rh-cdi-tck/dist-build/target/cdi-tck-4.1.0-
SNAPSHOT/artifacts/cdi-sig-report.xml: 0 failures in /Users/starksm/Dev/Jakarta/rh-
cdi-tck/dist-build/target/cdi-tck-4.1.0-SNAPSHOT/artifacts/cdi-tck-core-impl-4.1.0-
SNAPSHOT-sigtest-jdk17.sig
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

6.3. CDI Lite Signature Tests
CDI Lite requires the same signature tests as Full. Even though CDI Lite does not require some of
the Jakarta Interceptors behaviors, we did not want to restrict what CDI Lite implementations
might provide in the way of interceptors, for example, an implementation that supports both Lite
and Full. An implementation of CDI Lite can simply depend on the Jakarta Interceptors API artifact
to meet the signature test requirements.

6.4. Forcing a signature test failure
Just for fun (and to confirm that the signature test is working correctly), you can try the following:

1) Edit cdi-api-jdk11.sig

2) Modify one of the class signatures - in the following example we change one of the constructors
for BusyConversationException - here’s the original:

33

CLSS public jakarta.enterprise.context.BusyConversationException
cons public BusyConversationException()
cons public BusyConversationException(java.lang.String)
cons public BusyConversationException(java.lang.String,java.lang.Throwable)
cons public BusyConversationException(java.lang.Throwable)
supr jakarta.enterprise.context.ContextException
hfds serialVersionUID

Let’s change the default (empty) constructor parameter to one with a java.lang.Integer parameter
instead:

CLSS public jakarta.enterprise.context.BusyConversationException
cons public BusyConversationException(java.lang.Integer)
cons public BusyConversationException(java.lang.String)
cons public BusyConversationException(java.lang.String,java.lang.Throwable)
cons public BusyConversationException(java.lang.Throwable)
supr jakarta.enterprise.context.ContextException
hfds serialVersionUID

3) Now when we run the signature test using the above command, we should get the following
errors:

Missing Constructors

jakarta.enterprise.context.BusyConversationException: constructor public
jakarta.enterprise.context.BusyConversationException.BusyConversationException(java.la
ng.Integer)

Added Constructors

jakarta.enterprise.context.BusyConversationException: constructor public
jakarta.enterprise.context.BusyConversationException.BusyConversationException()

STATUS:Failed.2 errors

34

Chapter 7. Executing the Test Suite
This chapter explains how to run the TCK on Weld as well as your own implementation. The CDI
TCK uses the Maven Surefire plugin and the Arquillian test platform to execute the test suite.
Learning to execute the test suite from Maven is prerequisite knowledge for running the tests in an
IDE.

7.1. The Test Suite Runner
The test suite is executed by the Maven Surefire plugin during the test phase of the Maven life cycle.
The execution happens within a TCK runner project (as opposed to the TCK project itself). The TCK
distribution includes a sample runner project that executes the CDI TCK on Weld in standalone
mode as well as inside WildFly 31.x. To execute the CDI TCK on your own CDI implementation or
server, you could modify the sample TCK runner project and change it to use your CDI
implementation and/or Arquillian container configuration.

7.2. Running the Tests In Standalone Mode
To execute the TCK test suite against Weld, first switch to the jboss-tck-runner directory in the
extracted TCK distribution:

cd core-tck-4.x.y/weld/jboss-tck-runner


These instructions assume you have extracted the Jakarta CDI TCK software
according to the recommendation given in The TCK Environment.

Then execute the Maven life cycle through the test phase:

mvn test

Without any command-line flags, the test suite is run in standalone mode (activating weld-
embedded Maven profile), which means that any test within the integration, javaee-full and SE
TestNG group is excluded. This mode uses the Weld EE Embedded Arquillian container adapter to
invoke the test within a mock Jakarta EE life cycle and capture the results of the test. However,
passing the suite in this mode is not sufficient to pass the TCK as a whole. The suite must be passed
while executing using the in-container mode.

7.3. Running the Core Tests In the Container
To execute tests within Core of the specification you need to use in-container mode with the JBoss
TCK runner, you first have to configure WildFly as described in the Example of Setting up TCK to
use WildFly section.

Then, execute the TCK runner with Maven as follows:

35

mvn test -Dincontainer

The presence of the incontainer property activates an incontainer Maven profile. This time, all the
tests except the tests within SE and integration TestNG groups are executed.

For the <revnumber> release, the tests appropriate for the Jakarta EE Web Profile have moved to a
separated standalone CDI EE TCK distributed by the EE Platform TCK.

To specify particular TCK version:

mvn test -Dincontainer -Dcdi.tck.version=4.1.0


In order to run the TCK Test Suite in the container an Arquillian container adapter
is required. See also Arqullian reference guide.

The Arquillian container adaptor will also start and stop the application server automatically
(provided a managed Arqullian container adaptor is used).

Since Arquillian in-container tests are executed in a remote JVM, the results of the test must be
communicated back to the runner over a container-supported protocol. The sample WildFly TCK
runner utilizes servlet-based protocol (communication over HTTP).

7.4. Running the Tests In the Container - SE part
To execute full TCK testsuite you have to run tests within SE group as well if your implementation
supports that mode. SE tests make use of Arquillian container SE. The tests are executed in a
separate JVM instance with an isolated and configurable classpath. The Arquillian container does
not start CDI container in any way - this is still done directly in the tests using CDI SE bootstrap API
and jakarta.enterprise.inject.se.SeContainerInitializer. In order to run SE TCK tests in Weld, you
need to execute "weld-se" Maven profile from the JBoss TCK runner POM file as follows:

mvn test -Dincontainer=se

The profile provides the Weld dependencies as well as Arquillian settings (arquillian.xml). These
two need to be stored into a directory so that Arquillian container can then be instructed to pick
them up. In Weld, this orchestration is done using maven-dependency-plugin along with maven-
surefire-plugin.

7.5. Exporting the Test Archives
As you have learned, when the test suite is executing using in-container mode, each test class is
packaged as a deployable archive and deployed to the container. The test is then executed within
the context of the deployed application. This leaves room for errors in packaging. When

36

https://docs.jboss.org/author/display/ARQ/Containers
https://github.com/arquillian/arquillian-container-se
https://github.com/weld/core/blob/b530cf78275c618d9d866ee2d4a7fa81d59220e0/jboss-tck-runner/pom.xml#L561

investigating a test failure, you may find it helpful to inspect the archive after it’s generated. The
TCK (or Arquillian respectively) can accommodate this type of inspection by exporting the
generated archive to disk.

The feature just described is activated in the Arquillian configuration file (Arquillian settings). In
order to export the test archive you’ll have to add the deploymentExportPath property element
inside engine element and assign a relative or absolute directory where the test archive should be
exported, e.g.:

<engine>
 <property name="deploymentExportPath">target/</property>
</engine>

Arquillian will export the archive to that location for any test you run.

To enable the export for just a single test, use the VM argument arquillian.deploymentExportPath
when running the test(s):

mvn -Darquillian.deploymentExportPath=target/deployments/ ...

37

Chapter 8. Executing the Lang Model Test
Suite
The Language Model TCK does not depend on any test framework or test runner. Assertions are
made using Java assert. The tests are executed in an implementation-defined manner.

To run the Language Model TCK, implementations must call the
org.jboss.cdi.lang.model.tck.LangModelVerifier#verify() static method and pass it a ClassInfo
object for the LangModelVerifier class. The way how this method is called and how the ClassInfo
object is obtained are not specified, so that implementations are free to use whatever works best
for them. Two conditions must be satisfied:

• assertions are enabled;

• the language model under test is configured to only return runtime-retained annotations.

If the verify method returns successfully, the TCK passed. If it throws an exception, the TCK failed.

To aid with debugging, the verify method prints a message to the JVM standard output in case of a
success.

8.1. Recommendation
For CDI implementations, it is easiest to run the Language Model TCK using a build compatible
extension. For example:

public class LangModelVerifierExtension implements BuildCompatibleExtension {
 @Enhancement(types = LangModelVerifier.class, withAnnotations = Annotation.class)
 public void run(ClassInfo clazz) {
 LangModelVerifier.verify(clazz);
 }
}

8.2. Example Weld Test Suite Runner
To execute the TCK test suite against Weld, first switch to the lang-model-tck-runner directory in the
extracted TCK distribution:

cd core-tck-4.x.y/weld/lang-model-tck-runner


These instructions assume you have extracted the Jakarta CDI TCK software
according to the recommendation given in The TCK Environment.

Then, execute the TCK runner with Maven in the embedded Weld container as follows:

38

mvn test

To execute the TCK runner in WildFly use:

mvn -Dincontainer test

39

	Technology Compatibility Kit Reference Guide for Jakarta Contexts and Dependency Injection
	Table of Contents
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized

	Getting Acquainted with the TCK
	Chapter 1. Introduction (CDI TCK)
	1.1. TCK Primer
	1.2. Compatibility Testing
	1.2.1. Why Compatibility Is Important

	1.3. Compatibility Requirements
	1.3.1. Definitions
	1.3.2. Rules for Jakarta Contexts and Dependency Injection Version 4.1 Products

	1.4. About the CDI TCK
	1.4.1. CDI TCK Specifications and Requirements
	1.4.2. CDI TCK Components

	1.5. Packages for Jakarta Contexts and Dependency Injection Version 4.1

	Chapter 2. Appeals Process
	2.1. What challenges to the TCK may be submitted?
	2.2. How these challenges are submitted?
	2.3. How and by whom challenges are addressed?
	2.4. How accepted challenges to the TCK are managed?

	Chapter 3. Installation
	3.1. Obtaining the Software
	3.2. The TCK Environment
	3.2.1. Example of Setting up TCK to use WildFly

	Chapter 4. Configuration
	4.1. TCK Properties
	4.2. Arquillian settings
	4.3. The Porting Package
	4.4. Using the CDI TCK with the Jakarta EE Core Profile
	4.5. Using the CDI TCK with the Java SE
	4.6. Configuring TestNG to execute the TCK
	4.7. Configuring your build environment to execute the TCK
	4.8. Configuring your application server to execute the TCK

	Chapter 5. Reporting
	5.1. CDI TCK Coverage Metrics
	5.2. CDI TCK Coverage Report
	5.2.1. CDK TCK Assertions
	5.2.2. Producing the Coverage Report
	5.2.3. TestNG Reports

	Executing and Debugging Tests
	Chapter 6. Running the Signature Test
	6.1. Obtaining the sigtest plugin
	6.2. Running the signature test
	6.3. CDI Lite Signature Tests
	6.4. Forcing a signature test failure

	Chapter 7. Executing the Test Suite
	7.1. The Test Suite Runner
	7.2. Running the Tests In Standalone Mode
	7.3. Running the Core Tests In the Container
	7.4. Running the Tests In the Container - SE part
	7.5. Exporting the Test Archives

	Chapter 8. Executing the Lang Model Test Suite
	8.1. Recommendation
	8.2. Example Weld Test Suite Runner

